首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Zinc oxide nanopencil arrays were synthesized on pyramidal Si(1 0 0) substrates via a simple thermal evaporation method. Their field emission properties have been investigated: the turn-on electric field (at the current density of 10 μA/cm2) was about 3.8 V/μm, and the threshold electric field (at the current density of 1 mA/cm2) was 5.8 V/μm. Compared with similar structures grown on flat Si substrates, which were made as references, the pyramidal Si-based ZnO nanopencil arrays appeared to be superior in field emission performance, thus the importance of the non-flat substrates has been accentuated. The pyramidal Si substrates could not only suppress the field screening effect but also improve the field enhancement effect during the field emission process. These findings indicated that using non-flat substrates is an efficient strategy to improve the field emission properties.  相似文献   

2.
Field emitters of vertical carbon fibers on a silicon substrate are fabricated by catalytic chemical vapor deposition. After an ageing process of 150 min, field emission measurement of the fibers is carried out in a vacuum chamber with a base pressure of 5.0 × 10−4 Pa. The experimental results display that field emission performance of the carbon fibers depends strongly on the vacuum level during the experiments. After the field emission measurement, damage to the carbon fiber field emitters is observed from the scanning electron microscopic images.  相似文献   

3.
By employing a multi-walled carbon nanotube (MWCNT) film as the substrate, we obtain Fe tipped carbon nanorods or carbon nanoparticles grown on the outer walls of MWCNTs by combining sputtering deposition of Fe films and rf plasma enhanced chemical vapour deposition at high temperature. Scanning electron microscopy and high-resolution transmission electron microscopy are used to examine the structure of carbon nanorods and carbon nanoparticles. In addition, the formation mechanism is discussed briefly. The electron field emission tests indicate that the turn-on field (at 10μA/cm^2) of the treated MWCNT films decreases from 2.4 V/μm to O. 79 V/μm and the field emission current is relatively stable. The enhanced field enhancement factor, increasing emission densities coming from the grown nanorods and nanoparticles, and H terminated by H plasma a11 are responsible for the enhancement of the field enhancement factor.  相似文献   

4.
Ball-like nano-earbon thin films (BNCTs) are grown on Mo layers by microwave plasma chemical vapour deposition (MPCVD) system. The Mo layers are deposited on ceramic substrates by electron beam deposition method and are pretreated by ultrasonically scratching. The optimization effects of ultrasonically scratching pretreatment on the surface micro-structures of carbon films are studied. It is found from field-emission scanning electron microscope (FE-SEM) images and Raman spectra that the surface structures of the carbon films deposited on Mo pretreated are improved, which are composed of highly uniform nano-structured carbon balls with considerable disorder structures. Field emission (FE) measurements are carried out using a diode structure. The experimental results indicate that the BNCTs exhibit good FE properties, which have the turn on field of 1.56 V/μm, and the current density of 1.0mA/cm^2 at electric field of 4.0 V/μm, the uniformly distributed emission site density from a broad well-proportioned emission area of 4 cm^2 are also obtained. Linearity is observed in Fowler Nordheim (F N) plots in higher field region, and the possible emission mechanism of BNCTs is discussed.  相似文献   

5.
Crystalline coiled carbon nano/micro fibers in thin film form have been synthesized via direct current plasma enhanced chemical vapor deposition (PECVD) on copper substrates with acetylene as a carbon precursor at 10 mbar pressure and 750 °C substrate temperature. The as-prepared samples were characterized by X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). XRD pattern as well as selected area electron diffraction (SAED) pattern showed that the samples were crystalline in nature. SEM and HRTEM studies showed that as synthesized coiled carbon fibers are having average diameter ∼100 nm and are several micrometers in length. The as-prepared samples showed moderately good electron field emission properties with a turn-on field as low as 1.96 V/μm for an inter-electrode distance 220 μm. The variation of field emission properties with inter-electrode distance has been studied in detail. The field emission properties of the coiled carbon fibrous thin films are compared with that of crystalline multiwalled carbon nanotubes and other carbon nanostructures.  相似文献   

6.
Aligned trumpet-shaped zinc oxide microtube arrays have been successfully prepared on silicon (100) substrates via the chemical vapour deposition method with a mixture of ZnO and active carbon powders as reactants. The results show that two types of trumpet-shaped ZnO microtubes can be obtained. A plausible growth mechanism based on the studies of scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray diffraction (XRD), and room-temperature photoluminescence spectroscopy is proposed and discussed. The initial metastable zinc-rich ZnOx embryos play a key role in the formation of trumpet-shaped ZnO microtubes. On the different surfaces of metastable zinc-rich ZnOx (x 〈 1), embryos exhibit different stabilities and resistivities to oxidation; these tiny embryos are gradually extended with different growing rates along the directions of its long axis and circular boundary around its oxide shell. Just this special reason creates the formation of trumpet-shaped microtubes and results in the inerratic and imperfect hexagonshaped cross section that appears. Moreover, the analytical results also show that the as-synthesized ZnO microtube arrays can exhibit better room-temperature photoluminescence behaviour.  相似文献   

7.
Single-crystalline, pyramidal zinc oxide nanorods have been synthesized in a large quantity on p-Si substrate via catalyst-free thermal chemical vapor deposition at low temperature. SEM investigations showed that the nanorods were vertically aligned on the substrate, with diameters ranging from 60 to 80 nm and lengths about 1.5 μm. A self-catalysis VLS growth mechanism was proposed for the formation of the ZnO nanorods. The field emission properties of the ZnO nanopyramid arrays were investigated. A turn-on field about 3.8 V/μm was obtained at a current density of 10 μA/cm2, and the field emission data was analyzed by applying the Fowler-Nordheim theory. The stability of emission current density under a high voltage was also tested, indicating that the ZnO nanostructures are promising for an application such as field emission sources.  相似文献   

8.
Vertically well-aligned single crystal ZnO nanorod arrays were synthesized and enhanced field electron emission was achieved after radio-frequency (rf) Ar plasma treatment. With Ar plasma treatment for 30 min, flat tops of the as-grown ZnO nanorods have been etched into sharp tips without damaging ZnO nanorod geometrical morphologies and crystallinity. After the Ar ion bombardment, the emission current density increases from 2 to 20 μA cm−2 at 9.0 V μm−1 with a decrease in turn-on voltage from 7.1 to 4.8 V μm−1 at a current density of 1 μA cm−2, which demonstrates that the field emission of the as-grown ZnO nanorods has been efficiently enhanced. The scanning electron microscopy (SEM) results, in conjunction with the results of transmission electron microscopy (TEM), Raman spectroscopy and photoluminescence observation, are used to investigate the mechanisms of the field emission enhancement. It is believed that the enhancements can be mainly attributed to the sharpening of rod tops, and the decrease of electrostatic screening effect.  相似文献   

9.
The silicon nanoporous pillar array (Si-NPA) is synthesized by using hydrothermal etching method, and the electron field emission properties are studied. The results show that Si-NPA has a low turn-on field of 1.48 V/μm at the emission current of 0.1 μA and its field emission is relatively stable. The field emission enhancement of Si-NPA is believed to originate from its unique morphology and structure. Our finding demonstrates that the Si-NPA is a promising candidate material for field emission applications.  相似文献   

10.
ZnO nanorods and nanotubes are successful synthesized on A1N/sapphire substrates by metal-organic chemical vapour deposition (MOGVD). The different morphology and structure properties of ZnO nanorods and nanotubes are found to be affected by the A1N under-layer. The photoluminescence spectra show the optical properties of the ZnO nanorods and nanotubes, in which a blueshift of UV emission is observed and is attributed to the surface effect.[第一段]  相似文献   

11.
Different one dimensional (1D) carbon nanostructures, such as carbon nanonoodles (CNNs), carbon nanospikes (CNSs) and carbon nanotubes (CNTs) have been synthesized via thermal chemical vapour deposition (TCVD) technique. The different 1D morphologies were synthesized by varying the substrate material and the deposition conditions. The as-prepared samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM) and transmission electron microscope (TEM). FESEM and TEM images showed that the diameters of the CNNs and CNTs were ∼40 nm while the diameters of the CNSs were around 100 nm. Field emission studies of the as-prepared samples showed that CNSs to be a better field emitter than CNNs, whereas CNTs are the best among the three producing large emission current. The variation of field emission properties with inter-electrode distance has been studied in detail. Also the time dependent field emission studies of all the nanostructures have been carried out.  相似文献   

12.
Using a mixture of ZnO and Te powders as the source material, ZnO nanoleaves with high yield and uniform morphology are fabricated by thermal evaporation. Each nanoleaf is constructed with a nanowire and a nanodisc on one side of the nanowire near the top. The polygonal nanodisc is in symmetric distribution in relation to the nanowires and has polar planes ±(0001) as surfaces. A local homoepitaxial growth mechanism of ZnO polar nanodiscs induced by Te is proposed. With thin nanodiscs, the ZnO nanoleaves could be used in nanolasers, sensors, and photoelectronic nanodevices. Room-temperature photoluminescence result implies good crystalline quality of the ZnO nanoleaves.  相似文献   

13.
Field emissions (FE) from La-doped zinc oxide (ZnO) films are both experimentally and theoretically investigated. Owing to the La-doped effect, the FE characteristic of ZnO films is remarkably enhanced compared with an undoped sample, and a startling low turn-on electric field of about 0.4V/μm (about 2.5V/μm for the undoped ZnO films) is obtained at an emission current density of 1μA/cm2 and the stable current density reaches 1mA/cm2 at an applied field of about 2.1V/μm. A self-consistent theoretical analysis shows that the novel FE enhancement of the La-doped sample may be originated from its smaller work function. Due to the effect of doping with La, the Fermi energy level lifts, electrons which tunnelling from surface barrier are consumedly enhancing, and then leads to a huge change of field emission current. Interestingly, it suggests a new effective method to improve the FE properties of film materials.  相似文献   

14.
Nanocrystallites Au particles are deposited on a well-aligned silicon nanoporous pillar array (Si-NPA) surface through immersion plating to form an Au/Si-NPA composite system. It is found that a large number of Au nanoparticles are accumulated on the bottom of Si pillars to form a regular network structure. By studying the field emission properties of such an Au/Si-NPA composite system, we find that the Au/Si-NPA exhibits good field emission properties, with staring field about 2 V/μm and emission current density 67μA/cm^2 at 7.59 V/μm. The enhanced field emission can be deduced from the unique morphology and structure of Au/Si-NPA.  相似文献   

15.
Heterojunction light-emitting diodes with ZnO/Si structure were fabricated on both high-resistivity (p) and low-resistivity (p+) Si substrates by metal-organic chemical vapor deposition technology. Fairly good rectifications were observed from the current-voltage curves of both heterojunctions. Ultraviolet (UV) and blue-white electroluminescence (EL) from ZnO layer were observed only from ZnO/p+-Si heterojunction under forward bias at room temperature (RT), while strong infrared (IR) EL emissions from Si substrates were detected from both ZnO/p-Si and ZnO/p+-Si heterojunctions. The UV and IR EL mechanisms have been explained by energy band structures. The realization of RT EL in UV-visible and IR region on Si substrate has great applicable potential for Si-based optoelectronic integrated circuits.  相似文献   

16.
ZnO films were deposited on c-plane sapphire substrates by metal-organic chemical vapor deposition (MOCVD). Annealing treatments for as-deposited samples were performed in different atmosphere under various pressures in the same chamber just after growth. The effect of annealing atmosphere on the electrical, structural, and optical properties of the deposited films has been investigated by means of X-ray diffraction (XRD), atomic force microscope (AFM), Hall effect, and optical absorption measurements. The results indicated that the electrical and structural properties of the films were highly influenced by annealing atmosphere, which was more pronounced for the films annealed in oxygen ambient. The most significant improvements for structural and electrical properties were obtained for the film annealed in oxygen under the pressure of 60 Pa. Under the optimum annealing condition, the lowest resistivity of 0.28 Ω cm and the highest mobility of 19.6 cm2 v−1 s−1 were obtained. Meanwhile, the absorbance spectra turned steeper and the optical band gap red shifted back to the single-crystal value.  相似文献   

17.
J.P. Kar  W. Lee 《Applied Surface Science》2008,254(20):6677-6682
Vertical aligned ZnO nanowires were grown by MOCVD technique on silicon substrate using ZnO and AlN thin films as seed layers. The shape of nanostructures was greatly influenced by the under laying surface. Vertical nanopencils were observed on ZnO/Si, whereas the nanowires on both sapphire and AlN/Si substrate have the similar aspect ratio. XRD patterns suggest that the nanostructures have good crystallinity. High-resolution transmission electron microscopy (HRTEM) confirmed the single crystalline growth of the ZnO nanowires along [0 0 1] direction. Room-temperature photoluminescence (PL) spectra of ZnO nanowires on AlN/Si clearly show a band-edge luminescence accompanied with a visible emission. More interestingly, no visible emission for the nanopencils on ZnO/Si substrates, were observed.  相似文献   

18.
It is shown that ZnO nanorods grown by MOCVD exhibit enhanced radiation hardness against high energy heavy ion irradiation as compared to bulk layers. The decrease of the luminescence intensity induced by 130 MeV Xe+23 irradiation at a dose of 1.5 × 1014 cm–2 in ZnO nanorods is nearly identical to that induced by a dose of 6 × 1012 cm–2 in bulk layers. The change in the nature of electronic transitions responsible for luminescence occurs at an irradiation dose around 1 × 1014 cm–2 and 5 × 1012 cm–2 in nanorods and bulk layers, respectively. High energy heavy ion irradiation followed by thermal annealing is also effective on the quality of ZnO nanorods grown by electrodeposition. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
The growth of ZnO film on Si(1 0 0) substrate has been studied with synchrotron radiation (SR) assisted MOCVD method. The diethylzinc (DEZn) and CO2 are used as source materials, while Nitrogen is employed as a carrier gas for DEZn. With the assistance of SR the ZnO film can be deposited even at room temperature. XRD, SEM and photoluminescence (PL) studies show that the crystal quality of ZnO films grown with the assistance of SR is higher than that of those without SR assistance. The growth mechanism of ZnO film with the SR assistant MOCVD system is primarily discussed.  相似文献   

20.
ZnO thin films were grown on (1 0 0) p-Si substrates by Photo-assisted Metal Organic Chemical Vapor Deposition (PA-MOCVD) using diethylzinc (DEZn) and O2 as source materials and tungsten-halogen lamp as a light source. The effects of tungsten-halogen lamp irradiation on the surface morphology, structural and optical properties of the deposited ZnO films have been investigated by means of atomic force microscope (AFM), X-ray diffraction and photoluminescence (PL) spectra measurements. Compared with the samples without irradiation, the several characteristics of ZnO films with irradiation are improved, including an improvement in the crystallinity of c-axis orientation, an increase in the grain size and an improvement in optical quality of ZnO films. These results indicated that light irradiation played an important role in the growth of ZnO films by PA-MOCVD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号