首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The shear-induced ordering of lamellar and gyroid structures of a nonionic surfactant C16E7/D2O system in a Couette shear cell ( 0.001 < < 10 s-1, : shear rate) has been investigated by using a small angle neutron scattering technique. In the lamellar phase, the steady shear flow having > 0.01 s-1 suppresses undulation fluctuations of lamellae (Maxwell effect). This suppression of fluctuations brings two effects; 1) shear-induced lamellae ordering toward a parallel orientation and 2) obstruction of a lamellar↦gyroid transition. It is quite interesting to note that there is a characteristic shear rate range ( 0.01 < < 0.3 s-1), where both effects take place. We have also investigated the shear effects on the gyroid phase. Below the characteristic shear rate range, the gyroid structure keeps three-dimensional network lattice, while above the characteristic shear rate range, the gyroid structure transforms to the parallel orientation lamellae (shear-induced gyroid-lamellar transition). Thus the shear flow having the characteristic shear rate plays very important roles in shear ordering phenomena. Received 26 June 2000 and Received in final form 12 January 2001  相似文献   

2.
We report on studies using a new X-ray extensional flow cell to examine, for the first time, the structure of undulating lamellar lyotropic liquid crystal systems under extensional flow. The extensional component of the flow profile produced within this cell causes the lamellae to orient. We find that, although the intermembrane spacing does not change at low flow rates, it suddenly decreases after a critical flow rate has been attained due to the stretching and straightening of the lamellae. The effects of the shear component of flow on this oriented system have been examined in the context of a theoretical model developed by Ramaswamy. Received 29 May 2001 and Received in final form 20 July 2001  相似文献   

3.
We report on the rheology of a lyotropic lamellar surfactant solution (SDS/dodecane/pentanol/ water), and identify a discontinuous transition between two shear thinning regimes which correspond to the low-stress lamellar phase and the more viscous shear-induced multilamellar vesicle, or “onion” phase. We study in detail the flow curve, stress as a function of shear rate, during the transition region, and present evidence that the region consists of a shear-banded phase where the material has macroscopically separated into bands of lamellae and onions stacked in the vorticity direction. We infer very slow and irregular transformations from lamellae to onions as the stress is increased through the two-phase region, and identify distinct events consistent with the nucleation of small fractions of onions that coexist with sheared lamellae.  相似文献   

4.
We analyze the properties of a 19-dimensional Galerkin approximation to a parallel shear flow. The laminar flow with a sinusoidal shape is stable for all Reynolds numbers Re. For sufficiently large Re additional stationary flows occur; they are all unstable. The lifetimes of finite amplitude perturbations shows a fractal dependence on amplitude and Reynolds number. These findings are in accord with observations on plane Couette flow and suggest a universality of this transition scenario in shear flows.  相似文献   

5.
王琳  王先驱  王晓钢  刘悦 《中国物理 B》2014,23(2):25203-025203
The effects of out-of-plane shear flows on fast magnetic reconnection are numerically investigated by a twodimensional(2D)hybrid model in an initial Harris sheet equilibrium with flows.The equilibrium and driven shear flows out of the 2D reconnection plane with symmetric and antisymmetric profiles respectively are used in the simulation.It is found that the out-of-plane flows with shears in-plane can change the quadrupolar structure of the out-of-plane magnetic field and,therefore,modify the growth rate of magnetic reconnection.Furthermore,the driven flow varying along the anti-parallel magnetic field can either enhance or reduce the reconnection rate as the direction of flow changes.Secondary islands are also generated in the process with converting the initial X-point into an O-point.  相似文献   

6.
The dispersion behavior of agglomerates of several grades of fumed silica in poly(dimethyl siloxane) liquids has been studied as a function of particle morphology and applied flow conditions. The effects of primary particle size and aggregate density and structure on cohesivity were probed through tensile and shear strength tests on particle compacts. These cohesivity tests indicated that the shear strength of particle compacts was two orders of magnitude higher than the tensile strength at the same overall packing density. Experiments carried out in both steady and time‐varying simple‐shear flows indicate that dispersion occurs through tensile failure. In the steady‐shear experiments,enhanced dispersion was obtained at higher levels of applied stress and, at comparable levels of applied stress, dispersion was found to proceed faster at higher shear rates. Experiments conducted in time‐varying flows further corroborated the results obtained in tensile cohesivity tests. Experiments in which the mean and maximum stresses in the time‐varying flows were matched to the stresses produced in steady shear flows highlight the influence of flow dynamics on dispersion behavior.  相似文献   

7.
We consider the stability of periodic gravity free-surface water waves traveling downstream at a constant speed over a shear flow of finite depth. In case the free surface is flat, a sharp criterion of linear instability is established for a general class of shear flows with inflection points and the maximal unstable wave number is found. Comparison to the rigid-wall setting testifies that the free surface has a destabilizing effect. For a class of unstable shear flows, the bifurcation of nontrivial periodic traveling waves is demonstrated at all wave numbers. We show the linear instability of small nontrivial waves that appear after bifurcation at an unstable wave number of the background shear flow. The proof uses a new formulation of the linearized water-wave problem and a perturbation argument. An example of the background shear flow of unstable small-amplitude periodic traveling waves is constructed for an arbitrary vorticity strength and for an arbitrary depth, illustrating that vorticity has a subtle influence on the stability of free-surface water waves.  相似文献   

8.
We show that wetting properties crucially control the patterns in two-phase flows of immiscible fluids in microchannels. Ordered patterns, continuously entrained by the flow, are obtained when one phase completely wets the walls, while disordered patterns, intermittently adhering to the channel walls, are unavoidably produced when wetting is partial. A lower limit for the channel sizes capable of generating well structured objects (drops, pears, pearl necklaces, ...) is presented.  相似文献   

9.
We present a simple model for the development of shear layers between parallel flows in confining channels. Such flows are important across a wide range of topics from diffusers, nozzles and ducts to urban air flow and geophysical fluid dynamics. The model approximates the flow in the shear layer as a linear profile separating uniform-velocity streams. Both the channel geometry and wall drag affect the development of the flow. The model shows good agreement with both particle image velocimetry experiments and computational turbulence modelling. The simplicity and low computational cost of the model allows it to be used for benchmark predictions and design purposes, which we demonstrate by investigating optimal pressure recovery in diffusers with non-uniform inflow.  相似文献   

10.
在管道后传声的数值模拟中,必须考虑平均流剪切层的散射效应,然而在非均匀剪切流动下时域求解线化欧拉方程会面临Kelvin-Helmholtz不稳定波产生和放大的难题。已有的不稳定波抑制技术通常很难获得令人满意的结果。本文采用一种混合方法,首先引入有限时段的宽频声源波包将声波和不稳定波分离,进而采用声源滤波器技术对不稳定波进行抑制。数值验证算例选择半无限长轴对称环形硬壁直管道,采用计算气动声学方法时域求解2.5维线化欧拉方程,无背景流动的数值解与解析解符合很好,验证了程序的精度与可靠性,非均匀流动算例则表明所采用波包加声源滤波器混合方法对不稳定波抑制效果明显,对声场影响很小,充分显示了该方法的精度与可行性。  相似文献   

11.
We study a simple model of shear banding in which the flow-induced phase is destabilized by coupling between flow and microstructure (wormlike micellar length). By varying the strength of instability and the applied shear rate, we find a rich variety of oscillatory and chaotic shear banded flows. At low shear and weak instability, the induced phase pulsates next to one wall of the flow cell. For stronger instability, high shear pulses ricochet across the cell. At high shear we see oscillating bands on either side of central defects. We discuss our results in the context of recent experiments.  相似文献   

12.
Recent experimental and numerical studies have shown that the interaction between a localized vortical disturbance and the shear of an external base flow can lead to the formation of counter-rotating vortex pairs and hairpin vortices that are frequently observed in wall bounded and free turbulent shear flows as well as in subcritical shear flows. In this paper an analytical-based solution method is developed. The method is capable of following (numerically) the evolution of finite-amplitude localized vortical disturbances embedded in shear flows. Due to their localization in space, the surrounding base flow is assumed to have homogeneous shear to leading order. The method can solve in a novel way the interaction between a general family of unbounded planar homogeneous shear flows and any localized disturbance. The solution is carried out using Lagrangian variables in Fourier space which is convenient and enables fast computations. The potential of the method is demonstrated by following the evolved structures of large amplitude disturbances in three canonical base flows, including simple shear, plane stagnation (extensional) and pure rotation flows, and a general case. The results obtained by the current method for plane stagnation and simple shear flows are compared with the published results. The proposed method could be extended to other flows (e.g. geophysical and rotating flows) and to include periodic disturbances as well.  相似文献   

13.
The flow curve of wormlike micelles usually exhibits a stress plateau sigma* separating high and low viscosity branches, leading to shear-banded flows. We study the flow of semidilute wormlike micellar systems in a confined geometry: a straight microchannel. We characterize their local rheology thanks to particle image velocimetry. We show that flow curves cannot be described by a simple constitutive equation linking the local shear stress to the local shear rate. We demonstrate the existence of nonlocal effects in the flow of wormlike micellar systems and make use of a theoretical framework allowing the measurement of correlation lengths.  相似文献   

14.
In the present experimental investigation, shear sensitive liquid crystals have been successfully used to study the flow characteristics and detect separation in two-dimensional Sduct diffusers of different curvatures. Tapered-fin vortex generators in two different orientations were used to control flow separation that was observed on one of the curved walls of the diffuser. The results were verified by conventional oil flow visualization technique and excellent agreement was observed. In addition to visualization, detailed measurements that included wall static pressure, skin friction, diffuser exit total pressure and velocity distributions were taken in a uniform inlet flow with Reynolds number of 3.49 × 105. These results are presented here in terms of skin friction distribution, distortion and total pressure loss coefficients. The extent of the separation zone (in terms of intensity of red distribution) in the diffuser with and without vortex generators (in both configurations) compared well with the Preston tube measurements. The present study demonstrates that shear sensitive liquid crystals can be efficiently used to study the flow physics in complex internal flows. In addition, the results also indicate that shear sensitive liquid crystals can be effectively used not only as flow visualization tool but also to gain quantitative information about the flow field in internal flows.  相似文献   

15.
Polymer solutions are complex fluids that show elasticity and deformation in response to shear flows. A fluorescence resonance energy transfer (FRET) technique has been applied to measure the end-to-end distances of individual polymer molecules in Couette flow, using end-tagged reversible-addition fragmentation chain transfer (RAFT) polymerised poly(methyl methacrylate) (PMMA). Real-time rheofluorescence measurements on these polymers in solution above the critical overlap concentration are reported at several shear rates. The PMMA in Couette flow shows a systematic decrease in fluorescence, corresponding to a reduction in end-to-end distance of the polymer molecules with shear exposure. Full reversibility of the fluorescence signal is observed after the cessation of shear. These results show that polymer solution elasticity arises from compressive deformation of the polymer molecules in Couette flow. At polymer concentrations above the critical overlap, the polymer molecules are restricted by their neighbours and the net hydrodynamic forces are compressive rather than extensive.  相似文献   

16.
An optical measurement of vortex shape at a free surface   总被引:1,自引:0,他引:1  
We have proposed an optical method of vortex shape measurement based on Fourier transform profilometry (FTP) and verified it by experiment. The results of our experiment proposed in this paper show that FTP can efficiently reconstruct the vortex shape at a free surface and this method is suitable for wide use in studying such problems as liquid shear flow, wake of an object, flow behind a bluff body, and wetting angle.  相似文献   

17.
We report a novel transition to core precession for granular flows in a split-bottomed shear cell. This transition is related to a qualitative change in the 3D flow structure: For shallow layers of granular material, the shear zones emanating from the split reach the free surface, while for deep layers the shear zones meet below the surface, causing precession. The surface velocities reflect this transition by a change of symmetry. As a function of layer depth, we find that three qualitatively different smooth and robust granular flows can be created in this simple shearing geometry.  相似文献   

18.
19.
Fully resolved simulations of homogeneous shear turbulence (HST) laden with sedimenting spherical particles of finite size have been performed to clarify the effects of gravity on the development of particle-laden turbulent shear flows. We consider turbulence in a horizontal flow subjected to vertical or horizontal shear. Numerical results show that the development of HST laden with finite-size particles are significantly altered by gravity. The effects of gravity lead to a slower increase in the Taylor-microscale Reynolds number, whose value is found to be well correlated with the average particle Reynolds number. The gravity also causes a slower increase in the turbulence kinetic energy (TKE) through the enhancement of energy dissipation. The change in the Reynolds shear stress (RSS) due to particles also significantly contributes to the relative change in TKE. In vertically sheared cases, RSS has high values between counter-rotating trailing vortices behind the particles, which causes a transient relative increase in TKE. In horizontally sheared cases, on the other hand, RSS is reduced in the wakes of particles, which contributes to a significant relative reduction in TKE.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号