首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report morphologic changes of metallic surfaces at the onset of ablation, starting from gentle ablation to the emergence of ablation craters. The evolution of both observed melting zones and of ablation craters therein are investigated in dependence of the ablation laser fluence for nanosecond ultraviolet laser pulses. Further, consequences of crater formation for cluster synthesis within the released atomic vapor are pointed out. PACS 52.38.Mf; 79.20.Ds; 65.40.De  相似文献   

2.
Direct observations of ablation plasma dynamics in electric field is presented. A time-resolved spatial profile of the ablation plasma induced by femtosecond laser ablation (fsLA) with high fluence is visualized using a planar-laser-induced fluorescence (P-LIF) method. The external electric field is produced by installing a mesh electrode at 6 mm from a Samarium solid target. The Sm ion plasma created by the fsLA showed collective motion regardless of the external electric field, until they reached close to the electrode. When the accelerating and decelerating field was applied, the ions almost disappeared behind the electrode from the field of view. The observations are understood utilizing a SIMION simulation with a conceivable potential gradient caused by Debye shield effect, which is that the ablation plasma keeps the same potential as the target voltage and follows electric potential gradient near the mesh electrode. It is also revealed that this effect degrades time-of-flight resolution at high fluence irradiation. This work gives a new direction for further developments of a fsLA time-of-flight spectrometer.  相似文献   

3.
4.
Boron (B) or phosphorus (P) doped silicon nanowires (SiNWs) were synthesized by laser ablation. Local vibrational modes of B were observed in B-doped SiNWs by micro-Raman scattering measurements at room temperature. Fano broadening due to a coupling between the discrete optical phonon and a continuum of interband hole excitations was also observed in the Si optical phonon peak for B-doped SiNWs. An electron spin resonance signal due to conduction electrons was observed only for P-doped SiNWs. These results prove that B and P atoms were doped in substitutional sites of the crystalline Si core of SiNWs during laser ablation and electrically activated in the sites.  相似文献   

5.
Femtosecond laser (Ti:sapphire, 100 fs pulse duration) ablation of silicon in air was compared with nanosecond laser (Nd:YAG, 3 ns pulse duration) ablation at ultraviolet wavelength (266 nm). Laser ablation efficiency was studied by measuring crater depth as a function of pulse number. For the same number of laser pulses, the fs-ablated crater was about two times deeper than the ns-crater. The temperature and electron number density of the laser-induced plasma were determined from spectroscopic measurements. The electron number density and temperature of fs-induced plasmas decreased faster than ns-induced plasmas due to different energy deposition mechanisms. Images of the laser-induced plasma were obtained with femtosecond time-resolved laser shadowgraph imaging. Plasma expansion in both the perpendicular and the lateral directions were compared. PACS 52.38.Mf; 52.30.-q  相似文献   

6.
Laser–ablation techniques have been widely applied for removing material from a solid surface using a laser–beam irradiating apparatus. This paper presents a surface–texturing technique to create rough patterns on a silicon substrate using a pulsed Nd:YAG laser system. The different degrees of microstructure and surface roughness were adjusted by the laser fluence and laser pulse duration. A scanning electron microscope (SEM) and a 3D confocal laser–scanning microscope are used to measure the surface micrograph and roughness of the patterns, respectively. The contact angle variations between droplets on the textured surface were measured using an FTA 188 video contact angle analyzer. The results indicate that increasing the values of laser fluence and laser pulse duration pushes more molten slag piled around these patterns to create micro-sized craters and leads to an increase in the crater height and surface roughness. A typical example of a droplet on a laser–textured surface shows that the droplet spreads very quickly and almost disappears within 0.5167 s, compared to a contact angle of 47.9° on an untextured surface. This processing technique can also be applied to fabricating Si solar panels to increase the absorption efficiency of light.  相似文献   

7.
The influence of positive feedback on self-organized nanostructure (ripples) formation is investigated for multipulse femtosecond laser ablation from silicon surface. We find an increase of the modified surface area and of complexity and feature size with accumulated dose, confirming the previously postulated feedback effect of dose accumulation. More interestingly, a variation of temporal pulse-to-pulse separation, at constant total incident irradiation dose, strongly affects the structure formation. Though the feedback becomes weaker with increasing time intervals between successive pulses, pulses do not act independently even for separations of up to one second. To account for this observation, a model of perturbation decay and outdiffusion from the excited volume is suggested and compared to the experimental results. Inspection by surface sensitive microscopy (AFM, SEM) and conventional and high-resolution transmission electron microscopy reveal complex structural modification upon the laser interaction: even well outside the irradiated area, the target surface exhibits fine ripple-like undulations, consisting of alternating crystalline and amorphous silicon. This is confirmed by photoluminescence studies on the band–band and the dislocation-related D1-line.  相似文献   

8.
Carbon nanotubes (CNTs) appear to be ideal tip materials of atomic force microscopy (AFM) due to their small diameter and high stiffness. In this study, double-walled carbon nanotube (DWCNT) structures with different lengths of inner and outer layers are proposed as AFM tips. Both the vibration response and mode shapes of the tipped nanotubes under axial compression are studied by a theoretical nanobeam model. The results show that the natural frequencies of DWCNTs are significantly affected by the compressive loads and the length difference between the inner and outer nanotubes. The natural frequency associated with certain vibrational modes decreases with increasing compressive loads. This research may provide a useful reference for practical design for AFM tips with CNTs.  相似文献   

9.
Reflection high energy electron diffraction has been used to investigate the amorphous to polycrystalline structure transition in silicon induced by laser pulse. The power density of the ruby laser pulse, in the free generation mode, has been maintained below the threshold to induce surface damage. Depth analysis has been carried out in 〈100〉 silicon crystal using the channeling effect technique.  相似文献   

10.
The ability to machine very small features in a material has a wide range of applications in industry. We ablated holes into thin film of 100 nm thickness made from various metals by femtosecond pulsed laser ablation. Using a Ti:Sapphire laser which supplies a laser pulse of 150 fs duration at central spectrum wavelength of 400 nm, we have produced a series sub-micron holes, whose diameters are less than 200 nm with a focused laser spot of 1.7 μm. We found that the material damage threshold has a great influence on the quality of the produced features. Experimental results shows that the heat-affected zone and the degree of being affected reduce with the increase of threshold value.  相似文献   

11.
The space-time dynamics of thermal melting, subsurface cavitation, spallative ablation, and fragmentation ablation of the silicon surface excited by single IR femtosecond laser pulses is studied by timeresolved optical reflection microscopy. This dynamics is revealed by monitoring picosecond and (sub)nanosecond oscillations of probe pulse reflection, which is modulated by picosecond acoustic reverberations in the dynamically growing surface melt subjected to ablation and having another acoustic impedance, and by optical interference between the probe pulse replicas reflected by the spalled layer surface and the layer retained on the target surface. The acoustic reverberation periods change during the growth and ablation of the surface melt film, which makes it possible to quantitatively estimate the contributions of these processes to the thermal dynamics of the material surface. The results on the thermal dynamics of laser excitation are supported by dynamic measurements of the ablation parameters using noncontact ultrasonic diagnostics, scanning electron microscopy, atomic force microscopy, and optical interference microscopy of the modified regions appearing on the silicon surface after ablation.  相似文献   

12.
The production of periodic structures in silicon wafers by four-beam is presented. Because laser interference ablation is a single-step and cost-effective process, there is a great technological interest in the fabrication of these structures for their use as antireflection surfaces. Three different laser fluences are used to modify the silicon surface (0.8 J cm−2, 1.3 J cm−2, 2.0 J cm−2) creating bumps in the rim of the irradiated area. Laser induced periodic surface structures (LIPSS), in particular micro and nano-ripples, are also observed. Measurements of the reflectivity show a decrease in the reflectance for the samples processed with a laser fluence of 2.0 J cm−2, probably caused by the appearance of the nano-ripples in the structured area, while bumps start to deteriorate.  相似文献   

13.
The optimal regimes for uniform texturing of a multicrystalline silicon (mc-Si) surface by pulsed laser radiation have been determined. The morphology and reflectance spectra of the texturized mc-Si have been studied. The laser-texturized mc-Si samples with reflectance of 2?C3% over a wide spectral region have been produced. The influence of subsequent chemical etching on the reflective properties of the texturized surface has been analyzed.  相似文献   

14.
Nanosecond pulsed laser ablation of silicon in liquids   总被引:2,自引:0,他引:2  
Laser fluence and laser shot number are important parameters for pulse laser based micromachining of silicon in liquids. This paper presents laser-induced ablation of silicon in liquids of the dimethyl sulfoxide (DMSO) and the water at different applied laser fluence levels and laser shot numbers. The experimental results are conducted using 15 ns pulsed laser irradiation at 532 nm. The silicon surface morphology of the irradiated spots has an appearance as one can see in porous formation. The surface morphology exhibits a large number of cavities which indicates as bubble nucleation sites. The observed surface morphology shows that the explosive melt expulsion could be a dominant process for the laser ablation of silicon in liquids using nanosecond pulsed laser irradiation at 532 nm. Silicon surface’s ablated diameter growth was measured at different applied laser fluences and shot numbers in both liquid interfaces. A theoretical analysis suggested investigating silicon surface etching in liquid by intense multiple nanosecond laser pulses. It has been assumed that the nanosecond pulsed laser-induced silicon surface modification is due to the process of explosive melt expulsion under the action of the confined plasma-induced pressure or shock wave trapped between the silicon target and the overlying liquid. This analysis allows us to determine the effective lateral interaction zone of ablated solid target related to nanosecond pulsed laser illumination. The theoretical analysis is found in excellent agreement with the experimental measurements of silicon ablated diameter growth in the DMSO and the water interfaces. Multiple-shot laser ablation threshold of silicon is determined. Pulsed energy accumulation model is used to obtain the single-shot ablation threshold of silicon. The smaller ablation threshold value is found in the DMSO, and the incubation effect is also found to be absent.  相似文献   

15.
Nanosecond-pulsed KrF (248 nm, 25 ns) and Nd:YAG (1064 nm, 532 nm, 355 nm, 5 ns) lasers were used to ablate a polycrystalline Si target in a background pressure of <10−4 Pa. Si films were deposited on Si and GaAs substrates at room temperature. The surface morphology of the films was characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Round droplets from 20 nm to 5 μm were detected on the deposited films. Raman Spectroscopy indicated that the micron-sized droplets were crystalline and the films were amorphous. The dependence of the properties of the films on laser wavelengths and fluence is discussed.  相似文献   

16.
A KrF laser was used to ablate a polycrystalline Si target for deposition of Si on MgO and GaAs substrates at room temperature. The deposition was performed in 10−8 mbar, with two types of laser beams: a homogeneous beam being imaged onto the target (2.9 J/cm2), and a non-homogeneous which is nearly focused (2 J/cm2, 6.5 J/cm2). In both cases, the beam was scanned over an area of 1 cm2. For the homogenous beam, we observed only a limited number of droplets (<0.1 μm). A high number of micron-sized (<5 μm) droplets were observed on the film by the higher fluence nonhomogeneous laser beam. Raman spectroscopy showed that the micron-sized droplets are crystalline while the film is amorphous. The generation of the large droplets is most likely related to the cone structures formed on the ablated target. We also compared cone formation on a polycrystalline Si target and a single crystalline Si wafer, using multiple laser pulses onto a single spot.  相似文献   

17.
Perminov  P. A.  Dzhun  I. O.  Ezhov  A. A.  Zabotnov  S. V.  Golovan  L. A.  Ivlev  G. D.  Gatskevich  E. I.  Malevich  V. L.  Kashkarov  P. K. 《Laser Physics》2011,21(4):801-804
The method for the formation of silicon nanoparticles by picosecond laser pulses is studied upon the surface irradiation of the single-crystal silicon in various liquids. The ablation products are investigated using the atomic-force microscopy and Raman spectroscopy. The experimental results indicate the crystal-line structure of nanoparticles and the dependence of their size on the ablation medium.  相似文献   

18.
Changes in target surface morphology and ablation plume direction have been experimentally observed during the initial stages of the silicon laser ablation process. A relationship between both phenomena can be observed upon analysing the temperature field induced by the laser beam in a rough surface material. Theoretical studies on the deflection of the ablation plume are presented. These analyses are based on the hypothesis that particles that reach evaporation temperature will exit normally to the target surface with a velocity that is proportional to the surface temperature and the amount of the ablated material. Numerical solutions and experimental results of laser ablation process of silicon targets are found to agree with theoretical studies. PACS 42.25.Lc; 79.20.Dc; 02.70.Dc  相似文献   

19.
超短脉冲激光照射下氧化铝的烧蚀机理   总被引:1,自引:0,他引:1       下载免费PDF全文
利用烧蚀面积与激光脉冲能量的线性关系,确定了氧化铝的破坏阈值,同时采用散射光探测法,研究了800和400nm超短脉冲激光作用下氧化铝的破坏阈值对激光脉宽的依赖关系,并探讨了氧化铝的烧蚀规律. 利用雪崩击穿模型,解释了实验结果,并讨论了导带电子光吸收机理. 关键词: 飞秒激光 氧化铝 破坏阈值 雪崩模型  相似文献   

20.
Electrically pumped ultraviolet random lasing was achieved in metal-insulator-semiconductor (MIS) diodes based on ZnO films at room temperature. The ZnO films were grown by plasma assisted molecular beam epitaxy. Two different kinds of insulator layers, SiO x (0<x≤2) and AlO x (0<x≤1.5) were deposited by electron beam evaporation. X-ray diffraction experiments found these oxide layers were amorphous (or microcrystals), and X-ray photoelectron spectroscopy confirmed the Si and Al were fully oxidized. Compared with devices using SiO x as the insulator layer, diodes with evaporated AlO x layers showed a lower working threshold forward current (~20 mA to ~26 mA) and higher emission intensity. Periodic features indicating formation of closed-loop paths were deduced by the power Fourier transform of electroluminescence spectra. The cavity length of both devices increased as forward currents increased, while a larger cavity length was always obtained in the AlO x -involved device under the same working current. The improved performance was attributed to larger hole amount in AlO x layers. These results revealed that evaporated AlO x can serve as good electron blocking and hole supplying layers for hetero-structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号