首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 397 毫秒
1.
A facile electrospinning method has been utilized to fabricate poly (N-isopropylacrylamide) (PNIPAM)/poly (ethylene oxide) (PEO) blend nanofibers having the mean fiber diameters from approximately 250 to 380 nm. Scanning electron microscopy (SEM) images showed that the morphology and diameter distribution of the nanofibrous scaffolds can be easily modulated by changing the weight ratio of PNIPAM/PEO in electrospinning solution. X-ray diffraction (XRD) and thermogravimetric analysis (TGA) demonstrated that there were interactions between the molecules of PNIPAM and PEO. Vitamin B12 was chosen as a hydrophilic model drug for in situ encapsulation in PNIPAM/PEO blend nanofibrous scaffolds. The rate of drug release can be controlled by adjusting the weight ratio of PNIPAM/PEO, the temperature of release medium and the drug loading amount. It is suggested that the blend nanofibrous scaffold could be used as a new thermo-responsive matrix for the entrapment and controlled release of drugs.  相似文献   

2.
Electrospun carbon nanofibers (CNFs), which were modified with hydroxyapatite, were fabricated to be used as a substrate for bone cell proliferation. The CNFs were derived from electrospun polyacrylonitrile (PAN) nanofibers after two steps of heat treatment: stabilization and carbonization. Carbon nanofibrous (CNF)/hydroxyapatite (HA) nanocomposites were prepared by two different methods; one of them being modification during electrospinning (CNF-8HA) and the second method being hydrothermal modification after carbonization (CNF-8HA; hydrothermally) to be used as a platform for bone tissue engineering. The biological investigations were performed using in-vitro cell counting, WST cell viability and cell morphology after three and seven days. L929 mouse fibroblasts were found to be more viable on the hydrothermally-modified CNF scaffolds than on the unmodified CNF scaffolds. The biological characterizations of the synthesized CNF/HA nanofibrous composites indicated higher capability of bone regeneration.  相似文献   

3.
Lee HJ  Kim HS  Kim HO  Koh WG 《Lab on a chip》2011,11(17):2849-2857
This paper describes the development of multi-functional nanofiber scaffolds consisting of multiple layers of nanofiber scaffolds and nanofiber-incorporated poly(ethylene glycol) (PEG) hydrogels. As a proof-of-concept demonstration, we fabricated micropatterned polymeric nanofiber scaffolds that were capable of simultaneously generating cellular micropatterns within a biomimetic environment and detecting cellular metabolic products within well-defined microdomains. To achieve this goal, we designed nanofiber scaffolds with both vertical and lateral microdomains. Vertically heterogeneous structures that were responsible for multi-functionality were realized by preparing double-layered nanofiber scaffolds consisting of an antibody-immobilized bottom layer of nanofibers and an upper layer of bare polystyrene (PS) nanofibers by a two-step sequential electrospinning process. Photopatterning of poly(ethylene glycol) (PEG) hydrogel on the electrospun nanofibers produced laterally heterogeneous micropatterned nanofiber scaffolds made of hydrogel microwells filled with a nanofibrous region, which is capable of generating cell and protein micropatterns due to the different interactions that cells and proteins have with PEG hydrogels and nanofibers. When HepG2 cells were seeded into resultant nanofiber scaffolds, cells selectively adhered within the 200 μm × 200 μm PS fiber microdomain and formed 180.2 ± 6.7 μm spheroids after 5 days of culture in the upper layer. Furthermore, immobilized anti-albumin in the bottom layer detected albumin secreted by micropatterned HepG2 cells with higher sensitivity than flat PS substrates, demonstrating successful accomplishment of dual functions using micropatterned double-layered nanofiber scaffolds.  相似文献   

4.
Collagen functionalized thermoplastic polyurethane nanofibers (TPU/collagen) were successfully produced by coaxial electrospinning technique with a goal to develop biomedical scaffold. A series of tests were conducted to characterize the compound nanofiber and its membrane in this study. Surface morphology and interior structure of the ultrafine fibers were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atomic force microscopy (AFM), whereas the fiber diameter distribution was also measured. The crosslinked membranes were also characterized by SEM. Porosities of different kinds of electrospun mats were determined. The surface chemistry and chemical composition of collagen/TPU coaxial nanofibrous membranes were verified by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectrometry (FTIR). Mechanical measurements were carried out by applying tensile test loads to samples which were prepared from electrospun ultra fine non-woven fiber mats. The coaxial electrospun nanofibers were further investigated as a promising scaffold for PIECs culture. The results demonstrated that coaxial electrospun composite nanofibers had the characters of native extracellular matrix and may be used effectively as an alternative material for tissue engineering and functional biomaterials.  相似文献   

5.
郭睿  史向阳 《高分子科学》2016,34(9):1047-1059
In this study, multiwalled carbon nanotubes (MWCNTs) were used to encapsulate a model anticancer drug, doxorubicin (Dox). Then, the drug-loaded MWCNTs (Dox/MWCNTs) with an optimized drug encapsulation percentage were mixed with poly(lactide-co-glycolide) (PLGA) polymer solution for subsequent electrospinning to form drug-loaded composite nanofibrous mats. The structure, morphology, and mechanical properties of the formed electrospun Dox/PLGA, MWCNTs/PLGA, and Dox/MWCNTs/PLGA composite nanofibrous mats were characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, and tensile testing. In vitro viability assay and SEM morphology observation of mouse fibroblast cells cultured onto the MWCNTs/PLGA fibrous scaffolds demonstrate that the developed MWCNTs/PLGA composite nanofibers are cytocompatible. The incorporation of Dox-loaded MWCNTs within the PLGA nanofibers is able to improve the mechanical durability and maintain the three-dimensional structure of the nanofibrous mats. More importantly, our results indicate that this double-container drug delivery system (both PLGA polymer and MWCNTs are drug carriers) is beneficial to avoid the burst release of the drug and able to release the antitumor drug Dox in a sustained manner for 42 days. The developed composite electrospun nanofibrous drug delivery system may be used as therapeutic scaffold materials for post-operative local chemotherapy.  相似文献   

6.
A novel class of high‐flux and low‐fouling thin‐film nanofibrous composite (TFNC) membranes, containing a thin hydrophilic top‐layer coating, a nanofibrous mid‐layer scaffold and a non‐woven microfibrous support, has been demonstrated for nanofiltration (NF) applications. In this study, the issues related to the design and fabrication of a polyethersulfone (PES) electrospun nanofibrous scaffold for TFNC NF membranes were investigated. These issues included the influence of solvent mixture ratio, solute concentration, additives, relative humidity (RH), and solution flow rate on the morphology of an electrospun PES nanofibrous scaffold, the distribution of fiber diameter, the adhesion between the PES scaffold and a typical poly(ethylene terephthalate) (PET) non‐woven support, as well as the tensile properties of the nanofibrous PES/non‐woven PET composite substrates. Uniform and thin nanofibrous PES scaffolds with strong adhesion to the nanofiber‐PET non‐woven are several of the key parameters to optimize the NF performance of TFNC membranes. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2288–2300, 2009  相似文献   

7.
Poly(aniline‐co‐ethyl 3‐aminobenzoate) (3EABPANI) copolymer was blended with poly(lactic acid) (PLA) and co‐electrospun into nanofibers to investigate its potential in biomedical applications. The relationship between electrospinning parameters and fiber diameter has been investigated. The mechanical and electrical properties of electrospun 3EABPANI‐PLA nanofibers were also evaluated. To assess cell morphology and biocompatibility, nanofibrous mats of pure PLA and 3EABPANI‐PLA were deposited on glass substrates and the proliferation of COS‐1 fibroblast cells on the nanofibrous polymer surfaces determined. The nanofibrous 3EABPANI‐PLA blends were easily fabricated by electrospinning and gave enhanced mammalian cell growth, antioxidant and antimicrobial capabilities, and electrical conductivity. These results suggest that 3EABPANI‐PLA nanofibrous blends might provide a novel bioactive conductive material for biomedical applications. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

8.
Unique structure-controllable three-dimensional (3D) nanofiber stacks of cellulose acetate (CA) were fabricated successfully by simply increasing relative humidity (RH) during the electrospinning process. It is found that once the RH exceeding 60 %, 3D flocculent nanofiber stacks would grow on the flat plate collector toward the needle tip without using special assisting apparatus or preparing special electrospinning solution. Compared with those obtained at low RH, the as-prepared nanofibers fabricated under high RH condition exhibited similar nanofiber diameter, density and porosity, and more importantly, 3D flocculent structures instead of typical two-dimensional (2D) electrospun non-woven mats, which would contribute to a significant improvement on the hydrophilicity. It is believed that rapid solidification of CA during the jet process and strong charge repulsion among CA nanofibers play important roles in the formation of 3D nanofibrous structure. Furthermore, these 3D flocculent nanofiber scaffolds exhibited better cytocompatibilities with human MG-63 cells than common 2D nanofibrous mats. Thus a facile and effective approach was presented to prepare 3D nanofiber stacks with tunable and reproducible properties for biodegradable scaffold applications.  相似文献   

9.
We report the fabrication of multiwalled carbon nanotube (MWCNT)-incorporated electrospun polyvinyl alcohol (PVA)/chitosan (CS) nanofibers with improved cellular response for potential tissue engineering applications. In this study, smooth and uniform PVA/CS and PVA/CS/MWCNTs nanofibers with water stability were formed by electrospinning, followed by crosslinking with glutaraldehyde vapor. The morphology, structure, and mechanical properties of the formed electrospun fibrous mats were characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, and mechanical testing, respectively. We showed that the incorporation of MWCNTs did not appreciably affect the morphology of the PVA/CS nanofibers; importantly the protein adsorption ability of the nanofibers was significantly improved. In vitro cell culture of mouse fibroblasts (L929) seeded onto the electrospun scaffolds showed that the incorporation of MWCNTs into the PVA/CS nanofibers significantly promoted cell proliferation. Results from this study hence suggest that MWCNT-incorporated PVA/CS nanofibrous scaffolds with small diameters (around 160 nm) and high porosity can mimic the natural extracellular matrix well, and potentially provide many possibilities for applications in the fields of tissue engineering and regenerative medicine.  相似文献   

10.
Nanofibers based on natural polymers have recently been attracting research interest as promising materials for use as skin substitutes. Here, we prepared photocrosslinked nanofibrous scaffolds based on methacrylated chitosan (MACS) by photocrosslinking electrospun methacrylated chitosan/poly (vinyl alcohol) (PVA) mats and subsequently removing PVA from the nanofibers. We comprehensively investigated the solution properties of MACS/PVA precursors, the intermolecular action between MACS and PVA components, and the morphology of MACS/PVA nanofibers. Results indicated that the fiber diameter and morphology of the photocrosslinked methacrylated chitosan-based nanofibrous scaffolds were controlled by the MACS/PVA mass ratio and showed highly micro-porous structures with many fibrils. In vitro cytotoxicity evaluation and cell culture experiments confirmed that MACS-based mats with micro-pore structure were biocompatible with L929 cells and facilitated cellular migration into the 3D matrix, demonstrating their potential application as skin replacements for wound repair.  相似文献   

11.
The production of nanofibrous PLA/HA composite scaffolds is described. The morphological, mechanical, surface, and thermal properties of the composites were extensively investigated. The results show that the mixture of PLA and HA formed smooth nanofibers without lumps. The incorporation of HA increased the mechanical strength of the nanofibers and changed the morphology, increasing the mean fiber diameter and pore size. Surface and internal properties confirmed that HA was homogeneously distributed inside the nanofibers and oriented towards their surface. The nanofiber composites allowed the adhesion and proliferation of pre-osteoblasts for up to 3 weeks.  相似文献   

12.
In the development of tissue engineering scaffolds, the interactions between material surface and cells play crucial roles. The biomimetic 3‐D scaffolds absolutely provide better results for fulfilling requirements such as porosity, interconnectivity, cell attachment and proliferation. In this study, 3‐D electrospun scaffolds were prepared by using an electrospinning technique. Photo cross‐linkable polyvinyl alcohol was used as a polymeric matrix. During the electrospinning, the nanofibers were cross‐linked with in situ ultraviolet radiation. The crosslinked polymer fibers were achieved in a simple process at a single step. Nanofiber surface was modified with collagen by a chemical approach. The chemical structures were proven by attentuated total reflectance Fourier transform infrared spectroscopy and proton nuclear magnetic resonance. The surface morphology of the nanofibers was characterized by scanning electron microscope (SEM). Morphological investigations show that the resulting nanofibrous matrix has uniform morphology with a diameter of 220–250 nm. In vitro attachment and growth of 3T3 mouse fibroblasts and human umbilical vein endothelial cells (ECV304) cells on polyvinyl alcohol‐based nanofiber mats were also investigated. Cell attachment, proliferation, and methylthiazole tetrazolium cytotoxicity assays indicated good cell viability throughout the culture time, which was also confirmed by SEM analysis. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
A combination of bioceramics and nanofibrous scaffolds holds promising potential for inducing of mineralization in connective tissues. The aim of the present study was to investigate the attachment, proliferation and odontogenic differentiation of dental pulp stem cells (DPSC) on poly(l ‐lactide) (PLLA) nanofibers coated with mineral trioxide aggregate (MTA). Polymeric scaffolds were fabricated via the electrospinning method and their surface was coated with MTA. DPSC were isolated from dental pulp and their biological behavior was evaluated on scaffolds and the control group using MTT assay. Alkaline phosphatase (ALP) activity, biomineralization and the expression of odontogenic genes were analyzed during odontogenic differentiation. Isolated DPSC showed spindle‐shaped morphology with multi‐lineage differentiation potential and were positive for CD73, CD90 and CD105. MTA‐coated PLLA (PLLA/MTA) exhibited nanofibrous structure with average fiber diameter of 756 ± 157 nm and interconnected pores and also suitable mechanical properties. Similar to MTA, these scaffolds were shown to be biocompatible and to support the attachment and proliferation of DPSC. ALP activity transiently peaked on day 14 and was significantly higher in PLLA/MTA scaffolds than in the control groups. In addition, increasing biomineralization was observed in all groups with a higher amount in PLLA/MTA. Odontogenic‐related genes, DSPP and collagen type I showed a higher expression in PLLA/MTA on days 21 and 14, respectively. Taken together, MTA/PLLA electrospun nanofibers enhanced the odontogenic differentiation of DPSC and showed the desired characteristics of a pulp capping material.  相似文献   

14.
The objective of this study is to design a novel kind of scaffolds for blood vessel and nerve repairs. Random and aligned nanofibrous scaffolds based on collagen-chitosan-thermoplastic polyurethane (TPU) blends were electrospun to mimic the componential and structural aspects of the native extracellular matrix, while an optimal proportion was found to keep the balance between biocompatibility and mechanical strength. The scaffolds were crosslinked by glutaraldehyde (GTA) vapor to prevent them from being dissolved in the culture medium. Fiber morphology was characterized using scanning electron microscopy (SEM) and atomic-force microscopy (AFM). Fourier transform infrared spectroscopy (FTIR) showed that the three-material system exhibits no significant differences before and after crosslinking, whereas pore size of crosslinked scaffolds decreased drastically. The mechanical properties of the scaffolds were found to be flexible with a high tensile strength. Cell viability studies with endothelial cells and Schwann cells demonstrated that the blended nanofibrous scaffolds formed by electrospinning process had good biocompatibility and aligned fibers could regulate cell morphology by inducing cell orientation. Vascular grafts and nerve conduits were electrospun or sutured based on the nanofibrous scaffolds and the results indicated that collagen-chitosan-TPU blended nanofibrous scaffolds might be a potential candidate for vascular repair and nerve regeneration.  相似文献   

15.
电纺丝是一种利用聚合物溶液或熔体在强电场中进行喷射纺丝的加工技术,所制得的纤维、直径一般在数十纳米至几微米之间,比传统方法制得的纤维直径小几个数量级,是获得纳米尺寸长纤维的有效方法之一.  相似文献   

16.
Polymeric electrospun meshes are highly attractive as versatile platforms for numerous biomedical applications, tissue engineering, biosensors, and controlled release of bioactive agents. Herein, we describe the preparation and characterization of multilayered nanofibrous poly(ε-caprolactone) scaffolds with different embelin content by electrospinning technique. In vitro release in physiological and acidic pH and kinetic analysis were performed. The results show that it is possible to modulate the release profile depending on the number and thickness of layers added to drug-loaded scaffold that acts as an embelin reservoir. Electrospun multilayered scaffolds present characteristics, morphology and release profiles that could be very attractive for use as embelin controlled release systems.  相似文献   

17.
In this work, flexible nanofibrous membranes (mats) of poly(ethylene oxide) (PEO) with and without multiwall carbon nanotubes (MWNTs) were fabricated by electrospinning. The effects of annealing and MWNT concentration on mat morphology, MWNT dispersion within the nanofibers, and the mechanical properties of electrospun mats were studied. Annealing temperatures ranged from 60 °C to 64 °C [near the melting temperature (64 °C via differential scanning calorimetry)] for 4 minutes. Samples were annealed with and without applied tension (constrained and unconstrained annealing). Annealing at the highest temperature (64 °C), before the loss of fibrous morphology, significantly improved fiber–fiber bonding and therefore the tensile strength of the mats. Compared with unconstrained annealing, constrained annealing introduced fiber alignment (and therefore molecular orientation) along the tensile axis (direction of constraint) during annealing and resulted in a significant increase in modulus for all samples (with and without MWNTs). The use of constrained annealing may be a facile approach to enhance modulus in nanofibrous mats while maintaining high porosity. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 787–796  相似文献   

18.
Nanofibrous scaffolds of poly[(L-lactide)-co-(1,5-dioxepan-2-one)] generated by electrospinning have been compared with porous films obtained by solvent cast/salt leaching and homogeneous films. A comparison between the fibrous materials and the homogeneous solvent-cast films revealed that the surface of the nanofibers was more hydrophobic and that the nanofibers were degraded more rapidly in the presence of proteinase. It was obvious that the strain-to-break was reduced by the nanofiber formation, it decreased from 370% to 130% independent of fiber diameter. These values were however considerably higher than the strain-to-break of the solvent-cast/salt leaching scaffold. In addition, the nanofibrous material accelerated the adhesion and growth of the mesenchymal stem cell compared to the smooth material.  相似文献   

19.
The annulus fibrosus comprises concentric lamellae that can be damaged due to intervertebral disc degeneration; to provide permanent repair of these acquired structural defects, one solution is to fabricate scaffolds that are designed to support the growth of annulus fibrosus cells. In this study, electrospun nanofibrous scaffolds of polycaprolactone are fabricated in random, aligned, and round-end configurations. Primary porcine annulus fibrosus cells are grown on the scaffolds and evaluated for attachment, proliferation, and production of extracellular matrix. The scaffold consisting of round-end nanofibers substantially outperforms the random and aligned scaffolds on cell adhesion; additionally, the scaffold with aligned nanofibers strongly affects the orientation of cells.  相似文献   

20.
The development of tissue engineering scaffolds is of great significance for the repair and regeneration of damaged tissues and organs. Silk fibroin (SF) is a natural protein polymer with good biocompatibility, biodegradability, excellent physical and mechanical properties and processability, making it an ideal universal tissue engineering scaffold material. Nanofibers prepared by electrospinning have attracted extensive attention in the field of tissue engineering due to their excellent mechanical properties, high specific surface area, and similar morphology as to extracellular matrix (ECM). The combination of silk fibroin and electrospinning is a promising strategy for the preparation of tissue engineering scaffolds. In this review, the research progress of electrospun silk fibroin nanofibers in the regeneration of skin, vascular, bone, neural, tendons, cardiac, periodontal, ocular and other tissues is discussed in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号