首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pt(II) and Pd(II) methyl- and chloro-complexes with the tridentate N-donor ligands ((pyridin-2-yl)methylene)quinolin-8-amine (NNPy), ((pyridin-2-yl)ethylidene)quinolin-8-yl-amine (NNMePy), (phenyl(pyridin-2-yl)methylene)quinolin-8-yl-amine (NNPhPy), ((thiazol-2-yl)methylene)quinolin-8-amine (NNTh) and ((imidazol-4-yl)methylene)quinolin-8-amine (NNImH) were prepared by metal-assisted condensation of 8-aminoquinoline and an ortho-substituted aldehydo- or keto- N-heterocycle. Preliminary reactivity studies involving the coordinated tridentate N-donors, the chloro-ligand and the M-CH3 bond were carried out, leading to the synthesis of several new complexes. During these studies, the formation of a novel five-coordinate Pt(II) carbonyl-complex was observed.  相似文献   

2.
A series of cis-bis{5-[(E)-2-(aryl)-1-diazenyl]quinolinolato}dibenzyltin(IV) complexes have been synthesized by reacting sodium salts of 5-[(E)-2-(aryl)-1-diazenyl]quinolin-8-ol (LH) and dibenzyltin dichloride. These complexes have been characterized by 1H, 13C, 119Sn NMR, ESI-MS in solution and by IR and 119mSn Mössbauer, 117Sn CP-MAS NMR spectroscopy in solid state. In addition, the structures of three of the dibenzyltin(IV) complexes, viz., Bz2Sn(L2)2 (2), Bz2Sn(L3)2 (3), and Bz2Sn(L5)2 (5) (L = 5-[(E)-2-(aryl)-1-diazenyl]quinolin-8-ol: aryl = 4′-methylphenyl- (L2H), 4′-methoxylphenyl- (L3H) and 4′-bromophenyl- (L5H)) were determined by single-crystal X-ray diffraction. In general, the complexes were found to adopt a distorted cis-octahedral arrangement around the tin atom in both solution and solid state.  相似文献   

3.
A series of cis-bis{5-[(E)-2-(aryl)-1-diazenyl]quinolinolato}diphenyltin(IV) complexes have been synthesized and characterized by 1H, 13C, 119Sn NMR, ESI-MS, IR and 119mSn Mössbauer spectroscopic techniques in combination with elemental analysis. The structures of a ligand L6H (i.e., 5-[(E)-2-(4-ethoxyphenyl)-1-diazenyl]quinolin-8-ol) and three diphenyltin(IV) complexes, viz., Ph2Sn(L1)2 · (CH3)2CO (1), Ph2Sn(L4)2 (4) and Ph2Sn(L5)2 (5) (L = 5-[(E)-2-(aryl)-1-diazenyl]quinolin-8-ol: aryl = phenyl - (L1H); 4′-methylphenyl - (L4H) and 4′-bromophenyl - (L5H)) were determined by single crystal X-ray diffraction. In general, the complexes were found to adopt a distorted cis-octahedral arrangement around the tin atom. These complexes retain their solid-state structure in non-coordinating solvent as evidenced by 119Sn NMR spectroscopic results. The in vitro cytotoxicity of 1 is reported and compared with Ph2Sn(Ox)2 (Ox = deprotonated quinolin-8-ol) against seven well characterized human tumor cell lines.  相似文献   

4.
A series of Cu(II), Co(II), and Ni(II) complexes of bis-(3,5-dimethyl-pyrazolyl-1-methyl)-(3-phosphanyl-propyl)-amine C15H26N5P (1), prepared from 3-aminopropylphosphine and 1-hydroxymethyl-3,5-dimethylpyrazole were characterized. The nature of bonding and the geometry of the complexes have been deduced from elemental analysis, infrared, electronic, 1H NMR, 31P NMR spectra, magnetic susceptibility, and conductivity measurements. The studies indicate octahedral geometry for nickel complex and square pyramidal geometry for copper and cobalt complexes. The EPR spectra of copper complex in acetonitrile at 300 K and 77 K were recorded. Biological activities of the ligand and metal complexes have been studied on Staphylococcus aureus, Escherichia coli, Aspergillus niger, and Aspergillus flavus by well-diffusion method. The zone of inhibition values were measured at 37°C for a period of 24 h. The electrochemical behavior of copper complexes was studied by cyclic voltammetry. Catalytic study indicates the copper complex has efficient catalytic activity in oxidation of amitriptyline.  相似文献   

5.
Rehman  F.  Zafar  M. N.  Yousuf  S.  Nazar  M. F.  Mughal  E. U.  Malik  A.  Sumrra  S. H.  Zafar  M. N.  Rafique  H. 《Russian Journal of General Chemistry》2019,89(12):2516-2521

Zn(II) complexes of N-(quinolin-8-yl)picolinamide (HL1) (1) and N2,N6-di(quinolin-8-yl)pyridine-2,6-dicarboxamide (H2L2) (2) have been synthesized by deprotonation of the ligands and characterized by IR, NMR, and Single crystal X-ray crystallography. The mononuclear [Zn(L1)2] (3) and homodinuclear [Zn2(L2)2] (4) complexes are characterized by distorted octahedral geometries stabilized by hydrogen bonding and weak π···π interaction. The complexes demonstrate intense fluorescence bands in comparison with their corresponding ligands with well-distinguished intensity. The complexes act as efficient catalysts in various transesterification reactions. Among those, the best results have been achieved with complex 3 in conversion of 4-nitrophenylacetate into methyl acetate within 3 h.

  相似文献   

6.
Series of new (E)-1-aryl-3-[2-(piperidin-1-yl)quinolin-3-yl]prop-2-en-1-ones and (E)-1-aryl-3-[2-(pyrrolidin-1-yl)quinolin-3-yl]prop-2-en-1-ones have been efficiently prepared via the Claisen-Schmidt condensation of 2-(piperidin-1-yl)quinoline-3-carbaldehyde and 2-(pyrrolidin-1-yl)quinoline-3-carbaldehyde, respectively, with aryl methyl ketones under conditions of ultrasound and microwave irradiation. Structures of the products have been confirmed by IR, 1H NMR, 13C NMR, and mass spectroscopy, as well as by elemental analysis. Evaluation of the in vitro antibacterial activity against bacterial (Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli) and fungal (Aspergillus niger and Candida metapsilosis) strains has revealed good antimicrobial activity of some of the tested compounds.  相似文献   

7.
New potentially tridentate ligands, viz., 3-methyl-1-phenyl-4-(quinolin-8-ylhydrazono)pyrazol-5(1H)-one and 3-methyl-1-phenyl-4-(quinolin-8-ylhydrazono)pyrazole-5(1H)-thione (LH), and their complexes with FeIII were synthesized. The structures of the ligands and metal chelates (FeL2A; A = ClO4 or FeCl4) were studied by 1H NMR spectroscopy and magnetochemistry. The FeL2A complex (A = FeCl4) was investigated by X-ray diffraction. These low-spin complexes have pseudooctahedral structures with the N4X2 ligand environment (X = O or S).  相似文献   

8.
New 12-aryl-9-(p-methoxyphenyl)-8,9,10,12-tetrahydro-7H-benzo[b][4,7]phenanthrolin-11-ones having two asymmetric carbon atoms (C9 and C12) were synthesized by three-component condensation of quinolin-6-amine with 5-(p-methoxyphenyl)cyclohexane-1,3-dione and substituted benzaldehydes. According to the 1H NMR data, the products are mixtures of diastereoisomers.  相似文献   

9.
Two new branched pentadentate amines (N5), 3,6-bis(2-pyridylmethyl)-5 methyl-3,6-diazaheptane diazahexane-1-amine (1) and 4,7-bis(2-pyridylmethyl)-6-methyl-4,7-diazaheptane-1-amine (2) have been prepared. These have been used for the synthesis for the eight new macroacyclic Schiff base complexes, by template [1 + 1] condensation of pyridine-2-carbaldehyde or O-vaniline and amines (1 and 2) in the presence of Mn(II) and Zn(II) metal ions in methanol. The isolated complexes were characterized by a combination of microanalysis, IR and Mass spectroscopy. The structure of MnL1(ClO4)2 indicates that in the solid state the Mn(II) ion adopts a slightly distorted octahedral geometry. The synthesized compounds have antibacterial activity against the three Gram-positive bacteria: Enterococcus faecalis, Bacillus cereus and Staphylococcus epidermidis and also against the three Gram-negative bacteria: Citrobacter freundii, Enterobacter aerogenes and Salmonella typhi. The structure of the complexes derived from pyridine-2-carbaldehyde and metal–ligand interactions in these complexes were also theoretically studied. It was indicated that the structure of complexes is similar to each other and metal–ligand interactions depend mainly on the nature of metal ion and is similar for this series of ligands.  相似文献   

10.
Two new branched pentadentate amines (N5), 3,7-bis(2-pyridylmethyl)-5,5-dimethyl-3,7-diazaheptane-1-amine (1) and 4,8-bis(2-pyridylmethyl)-6,6-dimethyl-4,8-diaza octane-1-amine (2) have been prepared. These have been used to synthesis two new Schiff base complexes containing a pyridine and 2-pyridylmethyl pendant arm, by template [1+1] condensation of pyridine-2-carbaldehyde with the amines in the presence of Mn(II) in methanol. Elemental and spectral results are used to characterize the complexes and their structures are confirmed by single crystal X-ray diffraction studies. The structure of MnL1(ClO4)2 indicates that in the solid state the Mn(II) ion adopts a slightly distorted octahedral geometry. The crystal structure of [Ni(1)(MeCN)](ClO4)2 is also reported and exhibits a slightly distorted octahedral geometry. Also the synthesized complexes were screened for their antibacterial activity against Escherichia coli (Lio), Serratia marcescens (PTCC 1330), Staphylococcous aureus (ATCC 6633), and Proteus vulgaris (Lio) and results showed that the all complexes have antibacterial effects and [NiL1](ClO4)2, [MnL2](ClO4) and [MnL1](ClO4)2 have more effective ones against E. coli.  相似文献   

11.
A series of cyclometalating ligands, N-phenyl-N-(3-(pyridin-2-yl)phenyl)pyridin-2-amine (L1), N-(3-(1H-pyrazol-1-yl)phenyl)-N-phenylpyridin-2-amine (L2), N-phenyl-N-(3-(quinolin-2-yl)phenyl)pyridin-2-amine (L3), N-phenyl-N-(3-(pyridin-2-yl)phenyl)quinolin-2-amine (L4), N-(3-(isoquinolin-1-yl)phenyl)-N-phenylpyridin-2-amine (L5), and N-phenyl-N-(3-(pyridin-2-yl)phenyl)isoquinolin-1-amine (L6), were synthesized, which reacted with K(2)PtCl(4) in glacial acetic acid to produce N^C*N-coordinated platinum(II) complexes featured in a fused five-six-membered metallacycle, 1-6, respectively. The structures of 1, 3, 4, and 6 were determined by single crystal X-ray crystallography. The square geometries of the complexes are improved when compared with those of the N^C^N-coordinated complexes as the bite angles for the platinum in N^C*N-coordinated complexes 1, 3, and 4 are increased. The Pt-C bonds (1.94-1.95 ?) are shorter than those of C^N^N-coordinated platinum complexes but longer than those found for N^C^N-coordinated platinum complexes. With the increase of the steric interaction, the distortion of the molecules from a planar coordination geometry becomes more and more severe from 1 to 3 to 4 and 6, and in 6, the N-phenyl ring has to stand up on the coordination sphere to minimize the steric interaction with the N-isoquinolyl ring. The photophysical properties of the complexes were studied, and their absorption and emission spectra were interpreted by relating to the structural features revealed by the X-ray crystal structures and the orbital characters predicted by DFT calculations. All complexes are emissive in fluid at room temperature, and the quantum yields (up to 0.65) are comparable to those of highly emissive N^C^N-coordinated platinum complexes. Self-quenching was not observed in the concentration range of 10(-6) to 10(-4) M. Large rigidochromic shifts for the emissions of 2, 4, and 6 upon cooling from room temperature to rigid glass (77 K) were observed. Two different triplet states that control the emissions were proposed to account for the photophysical properties of 6.  相似文献   

12.
Three Ru(II) complexes [Ru(bpy)2(1-IQTNH)](ClO4)2 (1), [Ru(bpy)2(2-QTNH)](ClO4)2 (2) and [Ru(bpy)2(3-IQTNH)](ClO4)2 (3) (bpy = 2,2′-bipyridine, 1-IQTNH = 6-(isoquinolin-1-yl)-1,3,5-triazine- 2,4-diamine, 2-QTNH = 6-(quinolin-2-yl)-1,3,5-triazine- 2,4-diamine, 3-IQTNH = 6-(isoquinolin-3-yl)-1,3,5-triazine-2,4-diamine) have been synthesized and characterized by elemental analysis, 1H NMR spectroscopy, electrospray ionization mass spectrometry and X-ray crystallography. The electrochemical and spectroscopic properties of the complexes differ from those of [Ru(bpy)3]2+ owing to the structural differences between the ligands and their complexes.  相似文献   

13.
Two Schiff base ligands, 2-{E-[(5-phenyl-6H-1,3,4-thiadiazin-2yl)imino]methyne}-1-naphthol (L1H) and 5-nitro-2-{[(5-phenyl-6H-1,3,4-thiadiazin-2-yl)imino]methyne}phenol (L2H) have been prepared from 5-phenyl-6H-1,3,4-thiadiazin-2-amine (A), 2-hydroxynaphthaldehyde (1) and 2-hydroxy-5-nitrobenzaldehyde (2) Mononuclear Co(II), NiII and CuII complexes of the ligands have been prepared by using CoII, NiII and CuII salts with a 1:2 metal:ligand ratio. It was determined that the bidentate behavior of the ligands is accomplished via the phenolic oxygen and the azomethine nitrogen atoms. The structures of the ligands and their complexes were identified by using elemental analyses, i.r., 1H-n.m.r. spectra, electronic spectra, magnetic susceptibility measurements and thermogravimetric analyses (t.g.a.).  相似文献   

14.
Three-component condensation of quinolin-5-amine with methyl 2,2-dimethyl-4,6-dioxocyclohexane-1-carboxylate and aromatic (heteroaromatic) aldehydes or cyclohex-3-ene-1-carbaldehyde gave previously unknown 1,7-phenanthroline derivatives. The reactions in butan-1ol were characterized by 100% regioselectivity but low stereoselectivity, and mixtures of cis- and trans-isomeric methyl 7-aryl(hetaryl, cyclohexenyl)-10,10-dimethyl-8-oxo-7,8,9,10,11,12-hexahydrobenzo[b][1,7]phenanthroline-9-carboxylates were obtained at a ratio of ∼45: 55.  相似文献   

15.
New metal chelates of ZnII and CdII (ML2) based on (4Z)-3-methyl-1- phenyl-5-thioxo-1,5-dihydro-4-H-pyrazol-4-one quinolin-8-ylhydrazone (HL1) and (4Z)-5- methyl-2-phenyl-4-[(quinolin-8-ylimino)methyl]-2,4-dihydro-3H-pyrazole-3-thione (HL2) were synthesized. The structures of the metal chelates were studied by EXAFS and NMR (1H, 13C, and 111Cd) spectroscopy. The structure of the Cd(L1)2 complex was established by X-ray diffraction analysis. The complexes have pseudooctahedral structures with the N4S2 ligand environment.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 623–629, March, 2005.  相似文献   

16.
The new rigid bidentate nitrogen ligands 1, 2‐bis[(2, 5‐di‐tert‐butylphenyl)imino]acenaphthene ( 1 ) (dtb‐BIAN) and 1, 2‐bis[(2‐biphenyl)imino]acenaphthene ( 2 ) (bph‐BIAN) have been synthesized by condensation of 1, 2‐acenaphthylenedione with 2, 5‐di‐tert‐butylaniline and 2‐aminobiphenyl, respectively. Reduction of 1 and 2 with magnesium and calcium results in the formation of the monomeric metal complexes [(dtb‐BIAN)Mg(THF)2] ( 3 ), [(bph‐BIAN)Mg(DME)2] ( 4 ), and [(bph‐BIAN)Ca(THF)3] ( 5 ). Compounds 1 — 5 have been characterized by C/H analyses, IR, 1H NMR, and 13C NMR spectra, the structures of 2 , 3 , and 5 have been estimated by single crystal X‐ray diffraction.  相似文献   

17.
Three-component condensation of quinolin-5-amine with methyl 2-(1,3-benzodioxol-5-yl)-4,6-dioxocyclohexane-1-carboxylates and aromatic aldehydes (or cyclohex-3-ene-1-carbaldehyde) afforded new hexahydrobenzo[b][1,7]phenanthroline derivatives. The condensation in butan-1-ol is strictly regioselective but not stereoselective, so that mixtures of cis- and trans-isomeric methyl 7-aryl(hetaryl, cyclohexenyl)-10-(1,3-benzodioxol-5-yl)-8-oxo-7,8,9,10,11,12-hexahydrobenzo[b][1,7]phenanthroline-9-carboxylates at a ratio of ~40: 60% are formed.  相似文献   

18.
Two new Schiff base ligands comprising benzothiazole derivatives, namely (N,N′,E,N,N′E)-N,N′-(1,3-phenylenebis(methanylylidene))bis(5-nitrobenzo[d]thiazoL2-amine (L1) and (N,N′,E,N,N′E)-N,N′-(1,3-phenylene-bis(methanylylidene))bis(5-methylthiazo-L2-amine (L2), have been synthesized and thoroughly characterized using FTIR, 1H NMR, mass UV/vis and fluorescence spectral techniques. Further, L1 and L2 lead to the formation of lanthanide complexes 16 with Ce(III), Nd(III), and Pr(III) ions in 1:2 (metal:ligand) stoichiometry. UV/vis spectra of L1, L2 and 16 exhibit characteristic ligand centered absorptions in the range of 230–350 nm. Besides, both ligands and complexes show significant emissions and good anti-bacterial activity against pathogenic bacteria. Ligands and complexes display anti-bacterial activity against bacteria Staphylococcus aureus (S. aureus) (MTCC 1144) causing skin infection and food poisoning and pimple-causing bacteria propionic bacteria acnes (P. acnes) (MTCC 1951).  相似文献   

19.
Heterocyclic ketimines, 5-nitro-3-(indolin-2-one)hydrazinecarbothioamide (L1H), 5-nitro-3-(indolin-2-one)hydrazinecarboxamide (L2H), 6-nitro-3-(indolin-2-one)hydrazinecarbo-thioamide (L3H), and 6-nitro-3-(indolin-2-one) hydrazinecarboxamide (L4H), were prepared by the condensation of thiosemicarbazide and semicarbazide hydrochloride (in the presence of sodium acetate) in ethanol with the respective ketones. The dioxomolybdenum(VI) complexes and oxovanadium(V) complexes have been prepared by mixing dioxobis(2,4-pentanedinato)molybdenum(VI) in 1: 2 molar ratios and vanadium oxytrichloride in 1: 1 and 1: 2 molar ratios with monobasic bidentate ketimines. The resulting complexes have been characterized by elemental analysis, conductance measurements, and spectral studies, including IR, 1H NMR, and UV spectra. The ketimines and their corresponding metal complexes have been tested on a number of pathogenic bacteria and fungi in order to assess their growth inhibition potency at different concentrations. The article was submitted by the authors in English.  相似文献   

20.
New organotin(IV) complexes have been synthesized by treating potassium o‐isopropyl carbonodithioate with R2SnCl2/R3SnCl in 1 : 2/1 : 1 M/L ratio. All complexes have been characterized by IR and NMR (1H, 13C) spectroscopy. IR results shows that ligand acts as bidentate which is also confirmed by semi‐empirical study. NMR data reveals four coordinated geometry in solution. Computed positive heat of formation shows that complex 5 is thermodynamically unstable. UV/visible spectroscopy was used to assess the mode of interaction and binding of the complexes with DNA which shows that complex 5 exhibits higher binding constant as compared to complex 3 . In protein kinase inhibition assay, compound 3 was found most active, while other biological activities shows that triorganotin(IV) complexes are biologically more active as compared to diorganotin(IV) complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号