首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article gives a review of various straightforward models ofQ algebra representations. This is done using one and two variable function space models of theq-analogues of Lie enveloping algebras. The algebras considered are the quantum algebraU q (su 2 ) and aq analogue of the oscillator algebra. We present only the general framework and refer the reader to references of the joint work of the author and Willard Miller, Jr.Presented at the Colloquium on the Quantum Groups, Prague, 18–20 June 1992.  相似文献   

2.
We show that the quantum Heisenberg groupH q (1) and its *-Hopf algebra structure can be obtained by means of contraction from quantumSU q (2) group. Its dual Hopf algebra is the quantum Heisenberg algebraU q (h(1)). We derive left and right regular representations forU q (h(1)) as acting on its dualH q (1). Imposing conditions on the right representation, the left representation is reduced to an irreducible holomorphic representation with an associated quantum coherent state. Realized in the Bargmann-Hilbert space of analytic functions the unitarity of regular representation is also shown. By duality, left and right regular representations for quantum Heisenberg group with the quantum Heisenberg algebra as representation module are also constructed. As before reduction of group left representations leads to finite dimensional irreducible ones for which the intertwinning operator is also investigated.  相似文献   

3.
We show that it is possible to express the basis elements of the Lie algebra of the Euclidean group,E(2), as simple irrational functions of certainq deformed expressions involving the generators of the quantum algebraU q (so(2, 1)). We consider implications of these results for the representation theory of the Lie algebra ofE(2). We briefly discess analogous results forU q (so(2, 2)). Presented at the 6th International Colloquium on Quantum Groups: “Quantum Groups and Integrable Systems”, Prague, 19–21 June 1997.  相似文献   

4.
The classical Frobenius-Schur duality gives a correspondence between finite dimensional representations of the symmetric and the linear groups. The goal of the present paper is to extend this construction to the quantum toroidal setup with only elementary (algebraic) methods. This work can be seen as a continuation of [J, D1 and C2] (see also [C-P and G-R-V]) where the cases of the quantum groups U q (sl(n)), Y(sl(n)) (the Yangian) and U q (sl(n)) are given. In the toroidal setting the two algebras involved are deformations of Cherednik's double affine Hecke algebra introduced in [C1] and of the quantum toroidal group as given in [G-K-V]. Indeed, one should keep in mind the geometrical construction in [G-R-V] and [G-K-V] in terms of equivariant K-theory of some flag manifolds. A similar K-theoretic construction of Cherednik's algebra has motivated the present work. At last, we would like to lay emphasis on the fact that, contrary to [J, D1 and C2], the representations involved in our duality are infinite dimensional. Of course, in the classical case, i.e.,q=1, a similar duality holds between the toroidal Lie algebra and the toroidal version of the symmetric group. The authors would like to thank V. Ginzburg for a useful remark on a preceding version of this paper. Communicated by M. Jimbo  相似文献   

5.
We describe properties of the nonstandardq-deformationU q /′ (so n ) of the universal enveloping algebraU(so n ) of the Lie algebra so n which does not coincide with the Drinfeld-Jimbo quantum algebraU q(so n ) and is important for quantum gravity. Many unsolved problems are formulated. Some of these problems are solved in special cases. The research of this paper was made possible in part by Award UP1-2115 of U.S. Civilian Research and Development Foundation. Presented at DI-CRM Workshop held in Prague, 18–21 June 2000.  相似文献   

6.
Real forms of the quantum universal enveloping algebraU q (sl(2)) and a topological quantum group associated with this algebra are discussed.  相似文献   

7.
For any simple Lie algebra ? and any complex number q which is not zero or a nontrivial root of unity, %but may be equal to 1 we construct a dynamical quantum group (Hopf algebroid), whose representation theory is essentially the same as the representation theory of the quantum group U q (?). This dynamical quantum group is obtained from the fusion and exchange relations between intertwining operators in representation theory of U q (?), and is an algebraic structure standing behind these relations. Received: 24 March 1998 / Accepted: 14 February 1999  相似文献   

8.
For the quantum groupGL p,q (2) and the corresponding quantum algebraU p,q (gl(2)) Fronsdal and Galindo [Lett. Math. Phys.27 (1993) 59] explicitly constructed the so-called universalT-matrix. In a previous paper [J. Phys. A28 (1995) 2819] we showed how this universalT-matrix can be used to exponentiate representations from the quantum algebra to get representations (left comodules) for the quantum group. Here, further properties of the universalT-matrix are illustrated. In particular, it is shown how to obtain comodules of the quantum algebra by exponentiating modules of the quantum group. Also the relation with the universalR-matrix is discussed.Presented at the 4th International Colloquium Quantum Groups and Integrable Systems, Prague, 22–24 June 1995.  相似文献   

9.
Cyclic representations of maximal dimension of the quantum algebra U q L associated with any finite-dimensional simple Lie algebra L are studied from its regular representation at q p =1, which is proved to be a quotient module of itself as a left module with respect to some submodules. The general theory is given after an instructive example U q sl(2) is studied. Another explicit example U q sl(3) is also presented.This work is supported in part by the National Natural Science Foundation of China. Author Fu is also supported by the Jilin Provincial Science and Technology Foundation of China  相似文献   

10.
Starting from any representation of the Lie algebra on the finite dimensional vector space V we can construct the representation on the space Aut(V). These representations are of the type of ad. That is one of the reasons, why it is important to study the adjoint representation of the Lie algebra on the universal enveloping algebra U(). A similar situation is for the quantum groups Uq(). In this paper, we study the adjoint representation for the simplest quantum algebra Uq(sl(2)) in the case that q is not a root of unity.  相似文献   

11.
12.
The dually conjugate Hopf algebrasFun p,q (R) andU p,q (R) associated with the two-parametric (p,q)-Alexander-Conway solution (R) of the Yang-Baxter equation are studied. Using the Hopf duality construction, the full Hopf structure of the quasitriangular enveloping algebraU p,q (R) is extracted. The universal ?-matrix forsFun p,q (R) is derived. While expressing an arbitrary group element of the quantum group characterized by the noncommuting parameters in a representation independent way, the ?-matrix generalizes the familiar exponential relation between a Lie group and its Lie algebra. The universal ?-matrix and the FRT matrix generators,L (±), forU p,q (R) are derived from the ?-matrix.  相似文献   

13.
Starting from a certain multi-parameter matrix that satisfies the quantum Yang-Baxter equation, a two-parameter deformation of the universal enveloping algebra of the simple Lie algebrasl(3, C) is derived. It is shown that this has same product relations and antipode as the standard one-parameter deformationU q(sl(3, C)) but has a different coproduct. It is also shown that there exists a Hopf algebra whose product relations are merely the commutation relations ofsl(3, C) itself, but whose coproduct is different from the usual one for the universal enveloping algebra ofsl(3, C).  相似文献   

14.
TheR-matrices for the quantised Lie algebrasA n are constructed through the quantum double procedure given by Drinfel'd [6]. The case ofU q sl(3) is thoroughly analysed initially to demonstrate the more subtle points of the calculation. The ease of the calculation forA n is very dependent on a choice of generators for the Borel subalgebraU q b + and its dual, and a certain ordering imposed on these generators which is related to the length of a certain word in the Weyl group.Supported by a SERC studentship  相似文献   

15.
We realize the Hopf algebraU q–1 (so(N)) as an algebra of differential operators on the quantum Euclidean spaceR q N . The generators are suitableq-deformed analogs of the angular momentum components on ordinaryR N . The algebra Fun(R q N ) of functions onR q N splits into a direct sum of irreducible vector representations ofU q–1 (so(N)); the latter are explicitly constructed as highest weight representations.  相似文献   

16.
The structure of all discrete series of unitary irreducible representations of the U q (u(3, 1)) and U q (u(n, 1)) noncompact quantum algebras are investigated with the aid of extremal projection operators and the q-analog of the Mickelsson-Zhelobenko algebra Z(g, g′) q . The orthonormal basis constructed in the infinite-dimensional space of irreducible representations of the U q (u(n, 1)) ⊇ U q (u(n)) algebra is the q-analog of the Gelfand-Graev basis in the space of the corresponding irreducible representations of the u(n, 1) ⊇ u(n) classical algebra.  相似文献   

17.
It is shown that the bialgebra (two dimensional pseudo-group) of Woronowicz, with some mild technical conditions, can be embedded into the enveloping algebra of a solvable Lie algebra, with the usual Lie structure and a deformed coproduct. The bialgebra dual of this bialgebra is calculated and found to coincide with U q,q' (sl2) after fixing the center. The (associative) bialgebra dual form is calculated explicitly and found to be a product ofq-exponentials. Implications about quantum transfer matrices are discussed.  相似文献   

18.
An algebra homomorphism from the nonstandard q-deformed (cyclically symmetric) algebra U q(so3) to the extension Û q(sl2) of the Hopf algebra U q(sl2) is constructed. Not all irreducible representations (IR) of U q(sl2) can be extended to representations of Û q(sl2). Composing the homomorphism with irreducible representations of Û q(sl2) we obtain representations of U q(so3). Not all of these representations of U q(so3) are irreducible. Reducible representations of U q(so3) are decomposed into irreducible components. In this way we obtain all IR of U q(so3) when q is not a root of unity. A part of these representations turn into IR of the Lie algebra so3 when q 1.  相似文献   

19.
A nonstandard q-deformed Euclidean algebra U q(iso n ), based on the definition of the twisted q-deformed algebra U qson) (different from the Drinfeld–Jimbo algebra U q(so n )), is defined. Infinite dimensional representations R of U q(iso n ) are described. Explicit formulas for operators of these representations in the orthonormal basis are given. The spectra of the operators R(T n) corresponding to a q-analogue of the infinitesimal operator of shifts along the n-th axis are described. Contrary to the case of the classical Euclidean Lie algebra iso n , these spectra are discrete and spectral points have one point of accumulation.  相似文献   

20.
We derive a q-deformed version of the Lorentz algebra by deforming the algebraSL(2,C). The method is based on linear representations of the algebra on the complex quantum spinor space. We find that the generators usually identified withSL q(2,C) generateSU q (2) only. Four additional generators are added which generate Lorentz boosts. The full algebra of all seven generators and their coproduct is presented. We show that in the limitq→1 the generators are those of the classical Lorentz algebra plus an additionalU(1). Thus we have a deformation ofSL(2,CU(1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号