首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The surface heat transfer coefficient for In, Sn, and Pb films is obtained from the investigation of the hysteresis in the magnetic field-voltage characteristics of these films in He I and He II. This hysteresis is caused by the heating-induced formation of normal hotspots in the resistive state of the films. The experiments demonstrate the influence of the thermal boundary resistance and of the thermal conductivity of the substrate and helium bath on the hysteresis.  相似文献   

2.
3.
Studies have been made of the effect of heating tungsten and iridium field-ion emitters in the presence of an applied electrostatic potential. Although the original intention was to induce plastic deformation as a result of field stresses, and hence to investigate surface slip step formation, it is clear from the image contrast observed that, rather than inducing slip, the procedure instead leads to the formation of fine-scale thermal facets. Earlier reported attempts to deliberately induce surface slip in this way must also be reinterpreted in terms of thermal facet formation.  相似文献   

4.
The formation of intense current filaments, destroying the homogeneity of the active laser volume, limits the energy extraction from XeCl-lasers. Using time-resolved spectrally integrated pictures, the morphology and temporal development of such filaments are studied. The time scale of this process is found to be controlled by HCl depletion. With strong preionization (ne>109/cm 3) and a fast (10 ns) rising discharge voltage applied at the end of the preionizing X-ray pulse, the filaments originate from hotspots formed in the cathode layer. The shot by shot statistics of spot formation on freshly prepared cathodes reveal that hotspots are not caused by streamers developing in the high field region of strongly reduced electron density built up by electron diffusion during formation of the cathode sheath. Unexpectedly, a large number of weak diffuse filaments are found in spotless discharges (current density 300 A/cm2; duration 200 ns), in spite of the strong preionization  相似文献   

5.
The effects of direct UV laser processing on single crystal SiC in ambient air were investigated by cross-sectional transmission electron microscopy, Auger electron spectroscopy, and measurements of the electrical resistance using the transfer length method (TLM). Scanning electron microscopy was applied to study the morphology and dimensions of the laser-treated regions. After laser processing using a nanosecond pulsed solid-state laser the debris consisting of silicon oxide was removed by etching in buffered hydrofluoric acid. A layer of resolidified material remains at the surface indicating the thermal impact of the laser process. The Si/C ratio is significantly disturbed at the surface of the resolidified layer and approaches unity in a depth of several tens of nanometers. A privileged oxidation of carbon leaves elementary resolidified silicon at the surface, where nanocrystalline silicon was detected. Oxygen and nitrogen were detected near the surface down to a depth of some tens of nanometers. A conductive surface film is formed, which is attributed to the thermal impact causing the formation of the silicon–rich surface layer and the incorporation of nitrogen as dopant. No indications for microcrack or defect formation were found beneath the layer of resolidified material.  相似文献   

6.
The desorption of Cs and Na atoms from the corresponding layers applied to a gold film deposited on textured tungsten ribbon with a preferred orientation of the (100) surface is studied by thermal desorption spectroscopy with the products of thermal desorption scanned on a pulsed time-of-flight mass spectrometer. The Cs atoms evaporated at T = 300 K are desorbed by two phases, one of which can be identified with the filling of a monolayer and the other can be attributed to the formation of the CsAu compound. The Na atoms evaporated at T = 300 K are desorbed by three phases associated with the formation of a monolayer coating, a sodium compound of with gold, and a multilayer sodium film.  相似文献   

7.
Chemistry of organoaluminum compounds on silicon surfaces forms a foundation of chemical vapor deposition (CVD) for the formation of metal-semiconductor interconnects. We have applied multiple internal reflection Fourier-transform infrared spectroscopy and thermal desorption mass spectrometry to analyze the chemistry of one of the promising Al-CVD precursors, diethylaluminum hydride, on a Si(1 0 0)-2 × 1 surface. Diethylaluminum hydride adsorbs molecularly on this surface both at room temperature and at 100 K. Thermally induced surface reaction consumes the monolayer of adsorbed organoaluminum molecule. The only hydrocarbon product is ethylene desorbing from the silicon surface around 600 K. Despite a clean reaction that removes carbon from the surface, aluminum deposition is not significant because of the formation of alane products.  相似文献   

8.
The morphologies of pure buffer solution and DNA-containing solution in an open fluidic channel with rectangle cross section (1 microm in width and 150 nm in depth) have been explored using non-contact AFM. A remarkable feature is that a uniform nano-scale trench (approximately 15 nm deep and 14 microm long) on the surface of the DNA solution has been observed. The presence of two neighboring stretched DNA molecules near the solution surface may be responsible for the configuration of the nanotrench. This new phenomenon of partially stretched DNA molecules is likely to be useful for the future designing of fluidic devices, and for the manipulation and study of single DNA molecules.  相似文献   

9.
Through a one-step thermal reaction, Au nanoparticles were synthesized and self-assembled mixed films of Au nanoparticles and n-hexylthiol were prepared on iron surface. The size distribution and shape of Au nanoparticles were examined using transmission electron microscopy (TEM). Results of two electrochemical methods - electrochemical impedance spectroscopy (EIS) and polarization curves indicate that self-assembled mixed films can form on the iron surface and prevent it from corrosion effectively. Energy-dispersive X-ray spectroscopy (EDS) and scanning electron microscopy (SEM) measurements were applied to identify the formation of the mixed films on iron surface.  相似文献   

10.
Cluster techniques are used in hotspot spatial analysis to detect hotspots as areas on the map; an extension of the Fuzzy C-means that the clustering algorithm has been applied to locate hotspots on the map as circular areas; it represents a good trade-off between the accuracy in the detection of the hotspot shape and the computational complexity. However, this method does not measure the reliability of the detected hotspots and therefore does not allow us to evaluate how reliable the identification of a hotspot of a circular area corresponding to the detected cluster is; a measure of the reliability of hotspots is crucial for the decision maker to assess the need for action on the area circumscribed by the hotspots. We propose a method based on the use of De Luca and Termini’s Fuzzy Entropy that uses this extension of the Fuzzy C-means algorithm and measures the reliability of detected hotspots. We test our method in a disease analysis problem in which hotspots corresponding to areas where most oto-laryngo-pharyngeal patients reside, within a geographical area constituted by the province of Naples, Italy, are detected as circular areas. The results show a dependency between the reliability and fluctuation of the values of the degrees of belonging to the hotspots.  相似文献   

11.
《Physica A》2006,365(2):307-316
The formation of water from hydrogen–oxygen reaction on a metal surface is of immense importance due to the technological reasons. This reaction has been studied via a thermal mechanism on a Pt single crystal surface where the two molecules, H2 and O2, have been adsorbed dissociatively in atomic form. The reaction takes place between the adsorbed atoms through an intermediate OH radical. We have studied this reaction via a thermal (Langmuir–Hinshelwood mechanism) as well as a non-thermal mechanism (precursor mechanism) by the Monte Carlo computer simulations. In this study, we have applied a novel approach based upon the experimental observations that the dissociated oxygen atoms do not sit next to one another on a catalytic surface. Some interesting results like the shifting of the phase transition points, the broadening of the reaction window width and the elimination of the second-order phase transition in the non-thermal reaction mechanism are obtained by considering various possibilities of the reaction scheme. The phase diagrams as well as the snapshots of the surface covered with the reacting species are presented.  相似文献   

12.
In this paper, we perform a shot-to-shot detailed study of how residual thermal energy correlates to the optical absorptance change due to laser-induced surface structural modifications in multi-shot femtosecond laser ablation. We observe an overall enhancement for residual thermal coupling and absorptance in air. Surprisingly, residual thermal coupling in air shows a non-monotonic dependence on pulse number and reaches a minimum value after a certain number of pulses, while these behaviors are not seen in absorptance. In vacuum, however, both suppression and enhancement are seen in residual energy coupling although absorptance is always enhanced. To explain these observations, we suggest that air plasma plays a dominant role in thermal coupling at a relatively low number of applied pulses, while the formation of a cavity plays a dominant role at a high number of pulses. PACS 78.20.Ci; 81.05.Bx  相似文献   

13.
The current-induced transition between the normal and the superconducting state of Sn, In, and Pb films is investigated by varying the helium bath temperature, film thickness, mean free path, and an external magnetic field oriented parallel to the film surface. The experiments show that, farther fromT c , heating effects play an important role. The heating of the films relative to the helium bath by the liberation of Joule heat in the resistive state and the influence of hotspot formation on the step structures in the current-voltage characteristics of the samples are established with a graphite thermometer. the temperature and the size of the hotspots are determined by the power dissipation, the surface heat transfer, and the heat conduction within the film.  相似文献   

14.
The fluidic oscillator is a device that generates an oscillating jet when supplied with fluid at pressure. The oscillator has no moving parts — the creation of the unsteady jet is based solely on fluid-dynamic interactions. Fluidic oscillators can operate at frequencies ranging up to 20 kHz, and are useful for flow control applications. The fluidic oscillator evaluated in the current study is comprised of two fluid jets that interact in an internal mixing chamber, producing the oscillating jet at the exit. Both porous pressure-sensitive paint (PSP) and dye-colored water flow are used to visualize the internal and external fluid dynamics of the oscillator. Porous PSP formulations have been shown to have frequency responses on the order of 100 kHz, which is more than adequate for visualizing the fluidic oscillations. In order to provide high-contrast PSP data in these tests, one of the internal jets of the fluidic oscillator is supplied with oxygen, and the other with nitrogen. Results indicate that two counter-rotating vortices within the mixing chamber drive the oscillations. It is also shown that the fluidic oscillator possesses excellent mixing characteristics.  相似文献   

15.
We describe high precision experimental and numerical characterization of the positioning forces acting on Drosophila embryos that have self-assembled onto two-dimensional arrays of hydrophobic sites on a silicon substrate in water. The forces measured using a surface micromachined optical-encoder force sensor operating in reflection, are in good agreement with numerical simulations based on an extended surface energy model for the oil-based fluidic system. The positioning forces of ellipsoidal embryos on flat pads show a linear-spring-like relationship between the force and displacement on rectangular as well as cross-shaped pads. In contrast, the positioning forces of flat silicon chips, similar in size to the embryos, are linear in the displacement only over a limited range, and are then constant up to the detachment force. The optical force characterization method and the associated surface energy model for the self-assembly process can potentially be used for design optimization of fluidic self-assembly for a wide range of applications in biology.  相似文献   

16.
We present experimental results on the investigation of hotspot formation in PFP-I, a small 3.8 kJ plasma focus device operating in hydrogen-argon mixtures, at pressures from below 0.2 torr upward. A combination of multipinhole and slit-wire X-ray photography is used to measure the characteristic size and temperature of the hotspots, over a range of pressure and gas mixing ratios. Filtered p-i-n diodes and a beam-target detector are used to investigate the time evolution of the hotspots. Typical size for the hottest emitting region, at temperatures between 200 and 400 eV, is found to be around 150 μm, with a typical duration of the high temperature phase of the order of 10 ns. In general, the temperature in the final phase of the time evolution of the hotspots reaches values which are nearly twice those of the plasma column where they are formed. Characteristic size of the hotspots is about half of that of the initial plasma column  相似文献   

17.
The transport and capture of therapeutic magnetic nanoparticles in human microvasculature is studied numerically. The nanoparticles are injected into a vascular system upstream from malignant tissue, and are captured at the tumour site with the aid of a local applied magnetic field positioned outside the body. Taking into account the dominant magnetic and fluidic forces on the particles, our study shows that the nanoparticles can be directed to and concentrated at the desired zone that is within a few centimetres from the surface of the body. In addition, influence of the particles size, average blood flow velocity and the diameter of the blood vessel on the captured efficiency are parametrically analysed.  相似文献   

18.
Pyrex glass etching is an important technology for the microfluid application to lab-on-a-chip devices, but suffers from very low etching rate and mask-requiring process in conventional HF/BOE wet or plasma dry etching as well as thermal induced crack surface by CO2 laser processing. In this paper, we applied the liquid-assisted laser processing (LALP) method for linear through-wafer deep etching of Pyrex glass without mask materials to obtain a crackless surface at very fast etching rates up to 25 μm/s for a 20 mm long trench. The effect of laser scanning rate and water depth on the etching of the 500 μm thick Pyrex glass immersed in liquid water was investigated. The smooth surface without cracks can be achieved together with the much reduced height of bulge via an appropriate parameter control. A mechanism of thermal stress reduction in water and shear-force-enhanced debris removal is discussed. The quality improvement of glass etching using LALP is due to the cooling effect of the water to reduce the temperature gradient for a crackless surface and natural convection during etching to carry away the debris for diminishing bulge formation. An erratum to this article can be found at  相似文献   

19.
We report the formation of microtower structures, observed on multishot nanosecond laser irradiation of liquid metals (Ga, In, Sn–Pb alloy, Wood’s metal). Ablation in a reactive ambient gas (air, nitrogen, sulfur hexafluoride, nitrogen trifluoride) is shown to lead to a tower-like structure growing on the irradiated surface at a rate of 3–20 μm per pulse depending on laser fluence and the types of metal and ambient gas. The interplay between different processes in the heat-affected zone of the irradiated samples is analyzed, including ablation, thermal expansion, temperature variations of viscosity, surface tension, thermal stresses, capillary effects, and surface chemistry. A clear picture of microtower origin has been established, and qualitative modeling can explain the formation mechanism.  相似文献   

20.
Compact-structured silicon/carbon composites consisting of silicon, graphite, and coal tar pitch pyrolysis carbon are prepared via two heating procedures after liquid solidification. The first heating procedure plays a key role in the formation of compact-structured silicon/carbon composites, in which the coal tar pitch has a good fluidity at 180 °C above the softening temperature, and it is easy to form a uniform coating on the surface of materials. At the same time, the fluidic coal tar pitch could also fill the voids between particles to form compact-structured silicon/carbon composites. As-prepared silicon/carbon composites exhibit moderate reversible capacity of 602.4 mAh g?1, high initial charge-discharge efficiency of 82.3%, and good cycling stability with the capacity retention of 93.4% at 0.1 A g?1 after 50 cycles. It is noteworthy that the synthetic method is scalable which is suitable for mass production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号