首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Periodic reverse flow through membranes is an effective technique to remove foulants from microfiltration (MF) membrane surfaces. This work explored direct visual observation (DVO) of yeast deposition and subsequent removal via backwashing and single backpulses using microvideo photography with cellulose-acetate (CA) and Anopore anodised-alumina (AN) MF membranes. Foulant deposited less uniformly on the surfaces of the CA membranes than on the AN membrane surfaces during forward filtration. Foulant cake layers of approximately 30 μm thickness formed on both membranes after forward filtration for 1–2 h, leading to fouled-membrane fluxes of only 15–25% of the clean-membrane fluxes.Foulant was removed by reverse flow from the CA membrane surfaces in clumps. The time constant for foulant removal was determined from photomicrographs to be approximately 0.2 s, and 95% of the membrane surface was cleaned within 1 s of backpulsing, resulting in 95% recovery of the initial flux. The foulant cake was also removed from the AN membranes in clumps, though much of the membrane remained covered in a monolayer of yeast. The flux through the membrane covered with a full monolayer was determined during forward filtration to be about 70% of the clean membrane flux.A model for flux recovery is proposed which takes into account the fraction of the membrane surface which is completely cleaned as well as the fraction which remains covered in a foulant monolayer. The predicted and experimentally-determined recovered fluxes as a function of backpulse duration are in very good agreement.  相似文献   

2.
A serious problem faced during the application of membrane filtration in water treatment is membrane fouling by natural organic matter (NOM). The hydrophilicity, zeta potential and morphology of membrane surface mainly influence membrane fouling. The aim of the present study is to reveal the correlation between membrane surface morphology and membrane fouling by use of humic acid solution and to investigate the efficiency of backwashing by water, which is applied to restore membrane flux. Cellulose acetate butyrate (CAB) hollow fiber membranes were used in the present study. To obtain the membranes with various surface structures, membranes were prepared via both thermally induced phase separation (TIPS) and nonsolvent-induced phase separation (NIPS) by changing the preparation conditions such as polymer concentration, air gap distance and coagulation bath composition. Since the membrane material is the same, the effects of hydrophilicity and zeta potential on membrane fouling can be ignored. More significant flux decline was observed in the membrane with lower humic acid rejection. For the membranes with similar water permeability, the lower the porosity at the outer surface, the more serious the membrane fouling. Furthermore, the effect of the membrane morphology on backwashing performance was discussed.  相似文献   

3.
利用轴向动态反冲洗法处理含聚污水,研究考察了聚合物浓度对滤层阻力损失、油和悬浮物去除效能、反冲洗强度、反冲洗历时、及滤料反洗再生效能的影响规律。结果表明,聚合物浓度可以减少滤层成熟时间,过滤后期滤层阻力增长率大。含聚浓度对过滤效能影响较小,油和悬浮物去除率达到95.67 %和80.87%以上。聚合物浓度对反冲洗过程影响较大,通过提高反冲洗强度和增加反冲洗历时可以消除聚合物浓度对反冲洗过程的影响,反冲洗强度为10.5L/s.m2和反冲洗历时22.0~25.0min时滤料可以获得较好的反洗再生效果,反冲洗后核桃壳滤料油量为0.21~1.34 mg(油)/g(干核桃壳)。  相似文献   

4.
The effect of divalent ions on hydraulic irreversible fouling of ultrafiltration membranes was studied. Not only the effect of removing divalent ions by pretreatment of raw water with ion exchange is quantitatively studied, but also the effects of different types of backwash water are considered. By replacing divalent ions with sodium in cation exchange, the amount of hydraulic irreversible fouling (remaining fouling after backwashing) is reduced by at least 60%. When adding either calcium or magnesium to water treated with cation exchange, a linear relation is found between the ion concentration and the irreversible fouling rate. The effects of calcium and magnesium are identical when the concentrations are expressed in mol/L. Removing divalent ions from the backwash water does not affect irreversible fouling, but when using MilliQ water as backwash water, irreversible fouling can (almost) completely be prevented.  相似文献   

5.
A new ultra-filtration membrane has been developed using indigenously available polymer, low cost solvents and a simple casting technique. The performance evaluation of the developed membrane in terms of pure water permeability (PWP), flux and rejection as compared to commercially available national and international membranes was carried out. It is observed that the newly developed membranes show acceptable performance both in terms of flux and rejection. The compressibility characteristic of the new membrane shows an improvement after suitable chemical modification through cross-linking reactions. The application perspectives of the membranes developed in our laboratory have been evaluated for the selective separation of dyes from typical textile waste stream of polyester fibre dyeing units with an aim to recover and recirculate the auxiliary chemicals and water in the process house. The rejection of dyes >98% and the permeate flux (0.8–1.0 m3/m2 per day) values obtained for a specific type of textile effluent is of acceptable standards.The membranes were characterised for pore size and pore size distribution using molecular weight cut-off, combined bubble pressure and solvent permeability method. Membrane morphology has been studied using scanning electron microscopy (SEM). The other features of the developed membrane are its resistance to temperature and adverse chemical environment.  相似文献   

6.
The main limitation of the ultrafiltration (UF) process identified in drinking water treatment is membrane fouling. Although adsorption of natural organic matter (NOM) is known to cause irreversible fouling, operating conditions also impact the degree of irreversible fouling. This study examined the impact of several operating parameters on fouling including flux, concentrate velocity in hollow fibers, backwash frequency, and transmembrane pressure. A hydrophilic cellulose derivative membrane and a hydrophobic acrylic polymer membrane were used to conduct these tests. Pilot testing showed that when short-term reversible fouling was limited during a filtration cycle by increasing the concentrate velocity, reducing the flux, and increasing the backwash frequency, the evolution of the membrane toward irreversible fouling could be controlled. It appeared that operating parameters should be adjusted to maintain the increase of transmembrane pressure below a certain limit, determined to be approximately 0.85 to 1.0 bar for the tested UF membrane, in order to minimize the rate of irreversible fouling. This threshold for transmembrane pressure was confirmed empirically by compiling data from over 36 pilot studies. Other testing results demonstrated that hydraulic backwash effectiveness decreased as the transmembrane pressure applied in the previous filtration cycle increased. Backwash efficiency in terms of membrane flux recovery after hydraulic backwash was reduced by 50% when the transmembrane pressure was increased from 0.4 bar to 1.4 bar.  相似文献   

7.
Five different chemically modified versions of polysulfone were prepared via two different homogeneous chemical reaction pathways. They, together with the base polymer, were cast as membranes by a phase-inversion process. The surface energies of these membranes, as measured by contact angles, were used to characterize the different membranes. Streaming-potential measurements were obtained to probe the surface charge of the membranes. The surface roughness of each membrane was also determined by atomic-force microscopy. Each membrane was then exposed to deionized water, 0.08 g/l bovine serum albumin solution and deionized water using a standard filtration procedure to simulate protein fouling and cleaning potential.Both the chemistry and the size of the grafted molecules were correlated with respect to volumetric flux during ultrafiltration of protein solutions. Surface roughness seemed to be important for filtering pure water. Hysteresis between advancing and receding contact angles increased with hydrophilicity of the membrane surfaces. One possible explanation could be that surface reorientation was more likely with hydrophilic than with hydrophobic membranes. The membrane modified by direct sulfonation had the lowest surface energy and the shortest grafted chain length and exhibited the highest volumetric flux with BSA solution. It was also the easiest to clean and exhibited the highest initial flux recovery by stirring (91%) and backflush (99%) methods with deionized water. In most cases, backflushing rather than stirring was more effective in recovering the water flux.  相似文献   

8.
The flux of ultrafiltration membranes may be severely reduced when treating low-molecular-weight hydrophobic solutes even though the cut-off of the membrane is orders of magnitudes greater than the size of the solute molecules. In this investigation, the flux reduction was correlated to the membrane pore size using octanoic acid as a model substance. As a comparison, the pore size was also determined by measuring the retention of a dextran solution and by using the liquid–liquid displacement porometry method (LLDP). The membranes used were four asymmetric polysulphone and polyethersulphone membranes with nominal molecular weight cut-off (NMWCO) between 6 and 50 kDa. It is shown that the use of a low-molecular-weight hydrophobic solute may provide a rapid and simple method of characterising hydrophobic ultrafiltration membranes, both regarding their sensitivity to flux reduction due to adsorption, and their pore-size distribution.  相似文献   

9.
The primary aim of this paper was to develop a more effective and economical procedure for cleaning polyethylene hollow fiber microfiltration membranes that have been used for removing oil from contaminated seawater. Alkaline cleaning showed higher recovery of operating cycle time but lower permeate flux recovery than acid cleaning. The combination of both alkaline and acid cleaning agents gave the best operating cycle time and flux recoveries (e.g. 96% and 94%, respectively). As the cleaning agent soaking time was reduced, the actual operating cycle time was reduced. However, the ratio of operating time/chemical cleaning time increased as the soaking time was reduced. The soaking time was recommended to be as short as possible (8–10 h) in the design of small capacity plants and 30 h or higher in case of large capacity plants. SEM analysis showed that in case of alkaline cleaning, most of the pores remained covered with a foulant layer, resulting in low flux recovery. The SEM results of acid cleaned membranes showed more complete removal of the foulant layer from the pores resulting in better flux recovery. Surface analysis of membranes cleaned with combined acid/base agents showed the best results. A membrane surface similar to the original one was obtained. The long-term objective is to increase the understanding of membrane fouling phenomena, preventive means and membrane cleaning processes as it applies to the clean-up and desalination of oil contaminated seawater.  相似文献   

10.
Particles with a mean diameter of 5 μm were filtered by a ceramic tubular membrane to study the effects of backwash on the performance of submerged membrane filtration. A periodic backwash can completely remove the formed cake, diminishing a part of membrane internal fouling, and, therefore, recover the filtration flux. In a membrane-blocking/cake formation comparable filtration system, the filtration resistance due to membrane-internal fouling is over twice as high as that due to cake formation. The irreversible filtration resistance increases progressively during operation, and it can be regressed to a power-type empirical relationship. Filtration period data were analyzed using blocking models. Membrane blocking occurs in the early filtration periods and is followed by cake filtration. The filtration flux can be simulated by employing blocking models and empirical equations for filtration resistance. The backwash effectiveness was examined by comparing filtrate productivity and washing efficiency. The calculated results of productivity under various backwash durations agree well with experimental data. An increase in backwash flux or duration leads to higher productivity, when the duration is shorter than 2 min; however, the productivity may be decreased with an increase of backwash duration due to the back pumping of more filtrate. A longer filtration time in each cycle results in higher backwash efficiency since a formed cake may efficiently prevent further membrane pore clogging and is more easily removed by a backwash. The optimal backwash conditions can be determined appropriately by the proposed method, with respect to both backwash efficiency and filtrate productivity.  相似文献   

11.
A limiting flux model has been recently developed for predicting the fouling behavior of reverse osmosis and nanofiltration membranes by organic macromolecules [C.Y. Tang, J.O. Leckie, Membrane independent limiting flux for RO and NF membranes fouled by humic acid, Environmental Science and Technology 41 (2007) 4767–4773]. Several interesting results have been observed: (a) there was a maximum pseudo-stable flux (the limiting flux) beyond which further increase in applied pressure did not translate to a greater stable flux; (b) all membrane samples attained the limiting flux under constant pressure conditions as long as their initial flux was greater than the limiting flux; (c) the limiting flux did not depend on the properties of membranes; (d) the limiting flux had strong dependence on the feedwater composition, such as pH, ionic strength, and divalent ion concentration. The current study investigates the dependence of limiting flux on intermolecular interaction between foulant molecules. It was observed that the limiting flux was directly proportional to the intermolecular electrostatic repulsive force and that conditions enhancing foulant-deposited-foulant repulsion resulted in greater limiting flux values. Such observations agree well with a theoretical model capturing both hydrodynamic and DLVO interactions. Interaction force measurements by atomic force microscopy (AFM) were also performed. The limiting flux correlated reasonably well with AFM interaction force between the model foulant and the fouled membrane surface.  相似文献   

12.
《先进技术聚合物》2018,29(10):2619-2631
In the present work, development of neat and nanocomposite polyethersulfone membranes composed of TiO2 nanoparticles is presented. Membranes are fabricated using nonsolvent phase inversion process with the objective of improving antifouling, hydrophilicity, and mechanical properties for real and synthetic produced water treatment. Membranes are characterized using scanning electron microscopy, Fourier‐transform infrared, contact angle, porosity measurement, compaction factor, nanoparticles stability, and mechanical strength. The performance of prepared membranes was also characterized using flux measurement and oil rejection. Fourier‐transform infrared spectra indicated that noncovalence bond formed between Ti and polyethersulfone chains. The contact angle results confirmed the improved hydrophilicity of nanocomposite membranes upon addition of TiO2 nanoparticles owing to the strong interactions between fillers and water molecules. The increased water flux for nanocomposite membranes in comparison with neat ones can be due to coupling effects of improved surface hydrophilicity, higher porosity, and formation of macrovoids in the membrane structure. The membrane containing 7 wt% of TiO2 nanoparticles was the best nanocomposite membrane because of its high oil rejection, water flux, antifouling properties, and mechanical stability. The pure water flux for this membrane was twice greater than that of neat membrane without any loss in oil rejection. The hydrophilicity and antifouling resistance against oil nominates developed nanocomposite membranes for real and synthetic produced water treatment applications with high performance and extended life span.  相似文献   

13.
Phase-pure and well-intergrown Cu-LTA membranes are developed through copper ions exchange of sodium ions in Na-LTA framework. For pervaporation of 90.0 wt% ethanol/10.0 wt% water mixtures, the Cu-LTA membrane shows much higher water flux than Na-LTA membranes due to the enhancement of the pore size after ions exchange.  相似文献   

14.
聚偏氟乙烯微孔膜处理含铬(Ⅲ)水溶液的研究   总被引:9,自引:0,他引:9  
采用自制聚偏氟乙烯(PVDF)微膜和商品PVDF膜对含铬(Ⅱ)水溶液进行了减压膜蒸馏分离实验研究。结果表明,两种膜的膜通量相接近,商品对铬的截留率达90%以上,了膜性能参数和实验条件对膜通量和截留率的影响。  相似文献   

15.
High frequency backpulsing is a promising technique of flux enhancement that could contribute to the development of cross-flow micro-/ultrafiltration in water and wastewater treatment. A systematic study of the influence of the operational parameters was carried out with three suspensions, bentonite in tap water, biologically treated wastewater and activated sludge. The alumina membranes were tubular (0.02, 0.05 or 0.2 μm), with internal or external skin, the latter being not suitable. The technique was particularly efficient for bentonite; a minimal cross-flow velocity was required to reach a net flux independent of the cross-flow. The results are less good for the biological suspensions since the same fluxes could be reached by an increase of cross-flow velocity. However, the energy required by high frequency backpulsing is lower. The average reverse fluxes, measured by a tracer method, are surprisingly high and could hamper the development of the technique. At low Reynolds number (Re=3500), the net flux increased with the reverse flux, then reached a plateau corresponding to the total penetration of the laminar layer against the membrane wall by the backwash water.  相似文献   

16.
This study focuses on the use of surface-coated reverse osmosis (RO) membranes to reduce membrane fouling in produced water purification. A series of crosslinked PEG-based hydrogels were synthesized using poly(ethylene glycol) diacrylate as the crosslinker and poly(ethylene glycol) acrylate, 2-hydroxyethyl acrylate, or acrylic acid as comonomers. The hydrogels were highly water permeable, with water permeabilities ranging from 10.0 to 17.8 (L μm)/(m2 h bar). The hydrogels were applied to a commercial RO membrane (AG brackish water RO membrane from GE Water and Process Technologies). The water flux of coated membranes and a series-resistance model were used to estimate coating thickness; the coatings were approximately 2 μm thick. NaCl rejection for both uncoated and coated membranes was 99.0% or greater, and coating the membranes appeared to increase salt rejection, in contrast to predictions from the series-resistance model. Zeta potential measurements showed a small reduction in the negative charge of coated membranes relative to uncoated RO membranes. Model oil/water emulsions were used to probe membrane fouling. Emulsions were prepared with either a cationic or an anionic surfactant. Surfactant charge played a significant role in membrane fouling even in the absence of oil. A cationic surfactant, dodecyltrimethyl ammonium bromide (DTAB), caused a strong decline in water flux while an anionic surfactant, sodium dodecyl sulfate (SDS), resulted in little or no flux decline. In the presence of DTAB, the AG RO membrane water flux immediately dropped to 30% of its initial value, but in the presence of SDS, its water flux gradually decreased to 74% of its initial value after 24 h. DTAB-fouled membranes had lower salt rejection than membranes not exposed to DTAB. In contrast, SDS-fouled membranes had higher salt rejection than membranes not exposed to SDS, with rejection values increasing, in some cases, from 99.0 to 99.8% or higher. In both surfactant tests, coated membranes exhibited less flux decline than uncoated AG RO membranes. Additionally, coated membranes experienced little fouling in the presence of an oil/water emulsion prepared from DTAB and n-decane. For example, after 24 h the water flux of the AG RO membrane fell to 26% of its initial value, while the water flux of a PEGDA-coated AG RO membrane was 73% of its initial value.  相似文献   

17.
Two types of bacterial cellulose (BC) membranes were produced under a modified H&S medium using sucrose as a carbon source, with (CCB) and without (SHB) coconut juice supplement. Both membranes showed similar crystallinity of 69.24 and 71.55%. After being irradiated with E-beams under oxygen limited and ambient condition, the results from water contact angle showed that only the irradiated membrane CCB was increased from 30 to 40 degrees, and irradiation under oxygen ambient condition provided the greatest value. Comparing with the control membranes, smaller water flux was the cases after electron beam irradiation which indicated a reduction of membrane pore area. However, the results from molecular weight cut off (MWCO) revealed that chain scission was greater for membrane SHB and its cut off was increased from 28,000 Da to more than 35,000 Da. FTIR analysis revealed some changes in membrane functional groups, corresponding with the above results. These changes initiated new property of cellulose membranes, an anti-fungal food wrap.  相似文献   

18.
采用热致相分离法,以己内酰胺为溶剂,制备得到了聚苯硫醚微孔膜并对薄膜性能表征.聚苯硫醚-己内酰胺体系制膜的优点之一是溶剂己内酰胺是水溶性的,可以采用纯水作为后处理的萃取剂.选择了合适的浓度,利用压制成型法制备聚苯硫醚平板膜;研究了体系冷却时的相行为,并考察了降温速率、聚合物浓度等因素对微孔形态与薄膜性能的影响.研究表明,聚苯硫醚-己内酰胺体系以固液分相为主,萃取后形成球晶状的微孔结构.降温速率对薄膜的微孔形态、孔径以及连通性有重要影响;当体系以较低降温速率冷却时,多孔形态为枝叶状,形成了更多的开孔结构并获得了更大的孔径,这是获得高通量微孔膜的主要原因.通过控制降温速率可以制备纯水通量大于100 L/m2h,孔径约4~5μm且连通性良好的聚苯硫醚微孔膜;研究了聚合物浓度的影响,薄膜的纯水通量随着聚合物浓度的增大而减小,并且当聚苯硫醚浓度>50 wt%时,由于大于临界浓度而失去渗透性.  相似文献   

19.
Although an amount of research has reported that a flux minimum occurs at the isoionic/isoelectric points (pH 4.6-5.0) in the absence of salts in the ultrafiltration of bovine serum albumin (BSA), the real mechanism remains incompletely understood due to the lack of additional techniques in real time to detect the properties of deposited BSA (gel) layers formed during ultrafiltration (UF). An ultrasonic technique was developed as an analytical noninvasive tool to in situ investigate the properties of deposited BSA layers at pH 4.9 (isoionic or isoelectric point, IEP) and 6.9 during crossflow ultrafiltration. The membrane was a polysulfone (PSf) UF membrane with molecular weight cut-off (MWCO) 35 kDa. The feed used was 0.5 g/l BSA solution. Results show good correspondence between the ultrasonic signal responses and the development of BSA gel layers on the membranes. The deposit is thicker at pH 6.9 than at pH 4.9. However, the deposited gel layers are more compressible at pH 4.9 than at pH 6.9. The flux decline is mainly controlled by the density (packing) of the deposit layer. At pH 6.9, protein mainly deposits on the membrane surface. Around the isoelectric point, protein absorbs within and on the membranes. A functional relationship between acoustic signals and fouling resistance exists. The fouling resistance is mainly attributed to pore blocking or pore constriction.  相似文献   

20.
A new observation on the stability of supported liquid membranes (SLMs) is reported. Membranes prepared with ‘dry’ outer surfaces, free from organic wetting, were found to be more stable than the conventional SLM prepared with external surfaces wetted with a film of the organic membrane liquid phase. For copper transport the ‘dry’ surface SLM had a similar initial flux to the ‘wet’ surface SLM, and 2 to 4 times the flux after 100 h. Over a 50 h period the ‘dry’ SLM lost about 10% of its membrane liquid, whereas the ‘wet’ SLM lost about 50%. The difference is ascribed to the loss of membrane by emulsion formation at one of the aqueous-organic interfaces which would be greater for the ‘wet’ SLM with a continuous liquid film over the surface of the support.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号