首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Time-resolved small-angle neutron scattering (TR-SANS) was employed to observe temperature-induced phase transitions from the sponge (L 3 to the lamellar ( L α phase, and vice versa, in the water-oil (n -decane)-non-ionic surfactant ( C12E5 system using both bulk and film contrast. Samples of different bilayer volume fractions φ and solvent viscosities η were investigated applying various amplitudes of temperature jump ΔT . The findings of a previous 2H -NMR study could be confirmed, where the lamellar phase formation was determined to occur through a nucleation and growth process, while it was concluded that the L 3 -phase develops in a mechanistically different and more rapid manner involving uncorrelated passage formation. Likewise, the kinetic trends of the nucleation and growth transition (decreased transition time with increase of φ and ΔT were witnessed once again. Additionally, NMR and SANS data that demonstrate a strong dependency of that process on solvent viscosity η are presented. Contrariwise, it is made evident via both SANS and NMR results that the L α -to-L 3 transition time is independent (within experimental sensitivity) of the varied parameters (φ , ΔT , η . Unusual scattering evolution in one experiment, originating from a highly ordered lamellar phase, intriguingly hints that a major rate determining factor is the disruption of long-range order. Furthermore, the bulk contrast investigations give insight into structure peak shifts/development during the transitions, while the film contrast experiments prove the bilayer thickness to be constant throughout the phase transitions and show that there is no evidence for a change in the short-range order of the bilayer structure. The latter was considered possible, due to the different topology of the L 3 and L α phases. Lastly, an unexpected yet consistent appearance of anisotropic scattering is detected in the L 3 -to- L α transitions.  相似文献   

2.
We revisit the problem of a two-dimensional polymer ring subject to an inflating pressure differential. The ring is modeled as a freely jointed closed chain of N monomers. Using a Flory argument, mean-field calculation and Monte Carlo simulations, we show that at a critical pressure, pcN-1, the ring undergoes a second-order phase transition from a crumpled, random-walk state, where its mean area scales as 〈A〉 ∼ N, to a smooth state with 〈A〉 ∼ N2. The transition belongs to the mean-field universality class. At the critical point a new state of polymer statistics is found, in which 〈A〉 ∼ N3/2. For ppc we use a transfer-matrix calculation to derive exact expressions for the properties of the smooth state.  相似文献   

3.
In a p-spin interaction spherical spin-glass model both the spins and the couplings are allowed to change with time. The spins are coupled to a heat bath with temperature T, while the coupling constants are coupled to a bath having temperature TJ. In an adiabatic limit (where relaxation time of the couplings is much larger that of the spins) we construct a generalized two-temperature thermodynamics. It involves entropies of the spins and the coupling constants. The application for spin-glass systems leads to a standard replica theory with a non-vanishing number of replicas, n=T/T J . For p>2 there occur at low temperatures two different glassy phases, depending on the value of n. The obtained first-order transitions have positive latent heat, and positive discontinuity of the total entropy. This is an essentially non-equilibrium effect. The dynamical phase transition exists only for n<1. For p=2 correlation of the disorder (leading to a non-zero n) removes the known marginal stability of the spin glass phase. If the observation time is very large there occurs no finite-temperature spin glass phase. In this case there are analogies with the non-equilibrium (aging) dynamics. A generalized fluctuation-dissipation relation is derived. Received 12 July 1999 and Received in final form 8 December 1999  相似文献   

4.
The percolation phase transitions of two-dimensional lattice networks under a generalized Achlioptas process (GAP) are investigated. During the GAP, two edges are chosen randomly from the lattice and the edge with minimum product of the two connecting cluster sizes is taken as the next occupied bond with a probability p. At p = 0.5, the GAP becomes the random growth model and leads to the minority product rule at p = 1. Using the finite-size scaling analysis, we find that the percolation phase transitions of these systems with 0.5 ≤ p ≤ 1 are always continuous and their critical exponents depend on p. Therefore, the universality class of the critical phenomena in two-dimensional lattice networks under the GAP is related to the probability parameter p in addition.  相似文献   

5.
Within the framework of Landau-de-Gennes formulation, we analyse the effect of pressure on electric-field-induced phase transitions in a liquid crystal which shows spontaneously an isotropic-smectic A transition. Inferring from the experimental pressure dependences on the layer spacing in smectic A phase, as well as the nematic-smectic A metastable temperature T*AN, we incorporated the pressure dependence in the free energy through (the surface energy term) and the coupling between the quadrupolar nematic ordering Qij and the smectic order parameter ψ. From the S-T phase diagram, we found that the stability of field-induced nematic phase increases with pressure, whereas the discontinuity of the transition decreases. Also, the region where paranematic phase transits directly to smectic A phase increases with pressure.  相似文献   

6.
We study a single self avoiding hydrophilic hydrophobic polymer chain, through Monte-Carlo lattice simulations. The affinity of monomer i for water is characterized by a (scalar) charge , and the monomer-water interaction is short-ranged. Assuming incompressibility yields an effective short ranged interaction between monomer pairs (i,j), proportional to . In this article, we take (resp. ()) for hydrophilic (resp. hydrophobic) monomers and consider a chain with (i) an equal number of hydro-philic and -phobic monomers (ii) a periodic distribution of the along the chain, with periodicity 2p. The simulations are done for various chain lengths N, in d=2 (square lattice) and d=3 (cubic lattice). There is a critical value p c (d,N) of the periodicity, which distinguishes between different low temperature structures. For p >p c , the ground state corresponds to a macroscopic phase separation between a dense hydrophobic core and hydrophilic loops. For p <p c (but not too small), one gets a microscopic (finite scale) phase separation, and the ground state corresponds to a chain or network of hydrophobic droplets, coated by hydrophilic monomers. We restrict our study to two extreme cases, and to illustrate the physics of the various phase transitions. A tentative variational approach is also presented. Received: 10 March 1998 / Received in final form: 25 June 1998 / Accepted: 1st July 1998  相似文献   

7.
IR absorption spectra of excess electrons, selflocalized in bubbles in solid hcp4He and bcc3He, are measured. The pressure dependence of the 1s–1p transition energyE 1s1p can be fitted by the values, calculated using spherical rectangular well model and taking surface tension to be pressure independent. The bubble radius obtained varies smoothly from 10.7 Å at 45 atm to 9.4 Å at 100 atm, no dependence on crystalline structure as well as on isotope composition has been observed. The 1s–1p linewidth is 5–6 times smaller thanE 1s1p .The absorption cross section is estimated to be 12 Å2.  相似文献   

8.
We have studied the rheology and the conformation of stretched comb-like liquid-crystalline polymers. Both the influence of the comb-like structure and the specific effect of the nematic interaction on the dynamics are investigated. For this purpose, two isomers of a comb-like polymetacrylate polymer, of well-defined molecular weights, were synthesized: one displays a nematic phase over a wide range of temperature, the other one has only an isotropic phase. Even with high degrees of polymerization N, between 40 and 1000, the polymer chains studied were not entangled. The stress-strain curves during the stretching and relaxation processes show differences between the isotropic and nematic comb-like polymers. They suggest that, in the nematic phase, the chain dynamics is more cooperative than for a usual linear polymer. Small-angle neutron scattering has been used in order to determine the evolution of the chain conformation after stretching, as a function of the duration of relaxation t r. The conformation can be described with two parameters only: , the global deformation of the polymer chain, and p, the number of statistical units of locally relaxed sub-chains. For the comb-like polymer, the chain deformation is pseudo-affine: is always smaller than (the deformation ratio of the whole sample). In the isotropic phase, has a constant value, while pincreases as tr. This latter behavior is not that expected for non-entangled chains, in which p varies as t r 1/2 (Rouse model). In the nematic phase, decreases as a stretched exponential function of t r, while p remains constant. The dynamics of the comb-like polymers is discussed in terms of living clusters from which junctions are produced by interactions between side chains. The nematic interaction increases the lifetime of these junctions and, strikingly, the relaxation is the same at all scales of the whole polymer chain. Received 5 May 1999 and Received in final form 18 October 1999  相似文献   

9.
2 +O2→H2 O in the pressure range 0.2 Torr≤ptot≤10 Torr on Pt(111) surface. At a catalyst temperature of T=700 K the equilibrium oxygen coverage θo is determined as a function of hydrogen partial pressure α. The experimentally obtained θo is modelled in a two step process considering the mass transport in the gas phase as well as the catalytic reaction on the surface. In this pressure range the mass transport in the gas phase changes from molecular flow conditions to laminar flow, inducing a strong modification of the gas phase present at the catalyst through different diffusivities of the reactants as well as through desorbing reaction products from the catalyst. It is shown that these gas phase alterations have to be taken into account for a proper modelling of the surface mechanism. Simulation calculations allow one to identify the sequential hydrogen addition reaction as the main reaction path for water production in this parameter range. Excellent agreement with previous investigations is obtained for the determined activation energies of the water-producing reaction steps equal to Ef H2O≥0.7 eV. Received: 20 September 1998 / Revised version: 15 December 1998  相似文献   

10.
Two types of oxygen-deficient perovskites RBaCo2O5.5(R=Ho,Gd) related to the “122” type structure (a p × 2a p × 2a p ) have been studied on the basis of ab initio cluster calculations. We consider the peculiar behavior of the trivalent ions Co3+(3d 6) in either octahedral or pyramidal oxygen coordinations, which is related to a structural first-order phase transition in both compounds. Relative energy positions of low spin (LS, S = 0), intermediate spin (IS, S = 1) and high spin (HS, S = 2) electron configurations are calculated for the low-and high-temperature lattice structures of RBaCo2O5.5. A combined analysis of the calculated results and experimental structural data leads to a simple model that captures the most prominent features of the phase transition common to both compounds.  相似文献   

11.
A mean-field theory for domain structures in random multiblock copolymer melts is developed. We focus on the finite molecular weight effects resulting in a competition between macroscopic phase separation and microdomain formation in the system. We identify an essential parameter N ε controlling the phase behavior of the system, where N is the number of blocks per chain and ε is the composition asymmetry parameter (= the difference between the mean copolymer composition and its critical value). The phase diagram involving N ε and the reduced temperature as variables is obtained. The regions of coexistence of two or more phases are identified. We show that a superstructure formation on cooling is always pre-empted by a macroscopic phase separation of the macroscopically homogeneous (disordered) system yielding two homogeneous phases: H 0H 1 + H 2. The third (lamellar) phase separates on further cooling. Then hexagonal and body-centred-cubic phases take over if N ε 1. As the Flory interaction parameter χ increases further, the standard transitions BCCHEXLAM take place. Received 13 July 2001  相似文献   

12.
A lyotropic system, consisting of a lecithin (DMPC) and a non-ionic surfactant (C12E5) in water was studied. The system exhibits a lamellar-to-nematic phase transition. The nematic phase appears as the temperature is decreased and only exists in a very limited temperature and concentration range, for specific lipid-to-surfactant ratios. While a lamellar phase is found at higher temperatures in both mixed and pure C12E5 systems, the transition to the nematic phase at lower temperatures coincides with a micellar phase in the pure C12E5 system. The transition appears to be driven by the strong temperature dependence of the surfactant film spontaneous curvature. The structural properties of the lamellar phase close to the lamellar-to-nematic boundary have been studied by polarised light microscopy and small-angle neutron and X-ray scattering experiments. The signature of a helical defect with Burgers vector of magnitude 2 is apparent in our data, close to the lamellar-to-nematic phase transition. The proliferation of screw dislocations in the lamellar phase might be a plausible mechanism for driving this transition. Received 6 July 1999 and Received in final form 17 April 2000  相似文献   

13.
In this paper we find and present on diagrams in the coordinates of η=2t1/t0 (the ratio of the second and the first nearest neighbor hopping integrals) and n (the carrier concentration) the areas of stability for the superconducting spin-singlet s- and d-wave and the spin-triplet p-wave order parameters hatching out during the phase transition from the normal to the superconducting phase. The diagrams are obtained for an anisotropic two-dimensional superconducting system with a relatively wide partially-filled conduction band. We study a tight-binding model with an attractive nearest neighbor interaction with the amplitude V1, and the on-site interaction (with the amplitude V0) taken either as repulsive or attractive. The problem of the coexistence of the s-, p- and d-wave order parameters is addressed and solved for chosen values of the ratio V0/V1. A possible island of stability of the d-wave order parameter in the s-wave order parameter environment for a relatively strong on-site interaction is revealed. The triple points, around which the s-, d-, and p-wave order parameters coexist, are localized on diagrams. It is shown that results of the calculations performed for the two-dimensional tight-binding band model are dissimilar with some obtained within the BCS-type approximation.  相似文献   

14.
The relationship between a microscopic parameter p, that is related to the probability of choosing a mechanism of deposition, and the stochastic equation for the interface's evolution is studied for two different models. It is found that in one model, that is similar to ballistic deposition, the corresponding stochastic equation can be represented by a Kardar-Parisi-Zhang (KPZ) equation where both λ and ν depend on p in the following way: ν(p) = νp and λ(p) = λp 3/2. Furthermore, in the other studied model, which is similar to random deposition with relaxation, the stochastic equation can be represented by an Edwards-Wilkinson (EW) equation where ν depends on p according to ν(p) = νp 2. It is expected that these results will help to find a framework for the development of stochastic equations starting from microscopic details of growth models. Received 26 August 2002 / Received in final form 20 November 2002 Published online 6 March 2003 RID="a" ID="a"e-mail: ealbano@inifta.unlp.edu.ar  相似文献   

15.
We describe the effects of He, Ar and N2 on the resonant degenerate four-wave-mixing spectrum of NO2. We report results obtained using the phase-conjugate and forward-geometry experimental configurations for various laser intensities and bandwidths. We find that the effect of buffer-gas pressure on the reflectivity of the laser-induced grating depends critically on the relative value of the laser intensityI to the saturation parameterI sat. WhenI I sat the four-wave-mixing signal initially decreases with increasing buffer-gas pressure. However, at pressures above ca. 100 Torr the signal increases. WhenI I sat the signal is found to increase with buffer-gas pressure even at the lowest pressures studied. These observations do not agree with the standard model of degenerate four-wave mixing in the gas phase. We have investigated the source of these effects by employing different polarisation geometries of the pump and probe laser fields, and conclude that thermal gratings are responsible for the increase in signal observed at high buffer-gas pressure. This conclusion is supported by a simple gas kinetic model.  相似文献   

16.
The pressure dependence of the soft modes in the paraphase (boundary of the Brillouin zone, X point) and the ferrophase (center of the Brillouin zone, Γ point) is studied in the model ferroelastic crystals Hg2I2. An anomalous linear pressure dependence of the soft-mode frequency in the paraphase (p<p c ) is observed. The results obtained and the nature of the ferroelastic phase transition induced in Hg2I2 crystals by a high hydrostatic pressure are discussed. Pis’ma Zh. éksp. Teor. Fiz. 63, No. 4, 227–231 (25 February 1996)  相似文献   

17.
High pressure angle-dispersive X-ray diffraction investigations have been carried out on α-cristobalite form of Al0.5Ga0.5PO4. Our investigations show that the structural stability of this phase under high pressure depends on the nature of pressure conditions in the diamond anvil cell. Under hydrostatic pressure conditions using neon as a pressure transmitting medium, ambient orthorhombic C2221 phase transforms to orthorhombic Cmcm phase at 4.9?GPa. The high pressure Cmcm phase remains stable up to the highest pressure in the experiment, i.e. 19?GPa. The values of bulk modulus for C2221 and Cmcm phases are 19(2) and 126(4)?GPa, respectively. In contrast to this, under non-hydrostatic pressure conditions, transformation of ambient C2221 phase to Cmcm phase has not observed up to 17.4?GPa. Instead, a new monoclinic phase P21 is observed which contains layers of six coordinated Al/Ga ions separated by less dense five coordinated Al/Ga ions.  相似文献   

18.
A model of herding is introduced which is exceptionally simple, incorporating only two phenomena, growth and addition. At each time step either (i) with probability p the system grows through the introduction of a new agent or (ii) with probability q = 1 - p a free agent already in the system is added at random to a group of size k with rate Ak. Two versions of the model, A k = k and A k = 1, are solved and in both versions we find two different types of behaviour. When p > 1/2 all the moments of the distribution of group sizes are linear in time for large time and the group distribution is power-law. When p < 1/2 the system runs out of free agents in a finite time. Received 12 February 2002 Published online 9 July 2002  相似文献   

19.
H. Schmid 《Phase Transitions》2013,86(1-4):205-214
A short overview is given on recent polarized light microscopy studies of the orthorhombic ferroelastic domains and domain structures of YBa2Cu3O7-x . The optical characteristics of large domains and lamellar domains with a high density of twin walls are pointed out, both for reflected and transmitted light. The polarizing microscope has allowed to observe the ferroelastic detwinning in situ and to determine the activation energy of the ferroelastic wall movements. The question of a potential ferroelectric phase transition is also discussed.  相似文献   

20.
We define a block persistence probability p l (t) as the probability that the order parameter integrated on a block of linear size l has never changed sign since the initial time in a phase-ordering process at finite temperature T<T c . We argue that in the scaling limit of large blocks, where z is the growth exponent (), is the global (magnetization) persistence exponent and f(x) decays with the local (single spin) exponent for large x. This scaling is demonstrated at zero temperature for the diffusion equation and the large-n model, and generically it can be used to determine easily from simulations of coarsening models. We also argue that and the scaling function do not depend on temperature, leading to a definition of at finite temperature, whereas the local persistence probability decays exponentially due to thermal fluctuations. These ideas are applied to the study of persistence for conserved models. We illustrate our discussions by extensive numerical results. We also comment on the relation between this method and an alternative definition of at finite temperature recently introduced by Derrida [Phys. Rev. E 55, 3705 (1997)]. Received: 25 February 1998 / Revised: 24 July 1998 / Accepted: 27 July 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号