首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
根据生物质颗粒内部燃烧过程和生物质粉自然向下阴燃过程的共性,采用阴燃实验的方法研究了生物质内部燃烧特性。考查了物料种类、含水率、孔隙尺寸对生物质内部燃烧温度,燃烧中干燥前沿、炭氧化前沿的移动速度,裂纹、气体成分等的影响。实验结果为生物质燃烧和阴燃过程模拟以及深入理论分析提供了依据。  相似文献   

2.
采用不同水温通过浸泡的方式对小麦秸秆、稻壳和桐木木屑进行水洗,对原样和水洗后样品分别进行燃料特性分析、热失重分析和灰熔融特性分析,研究了水洗对生物质燃料特性及燃烧特性的影响。结果表明,水洗能有效脱除生物质中对锅炉运行造成危害的K、Na、Cl和S元素,使燃烧过程中挥发分的析出和燃烧略有滞后,改善了小麦秸秆的灰熔融特性。随着水温增大,除Cl外,其他三种元素的脱除率单调变化,小麦秸秆的灰渣逐渐变"短"。  相似文献   

3.
考虑热解的扩展连续膜模型,可以详细预报煤粉挥发分析出、焦碳燃烧的全过程.模型以CH4燃烧的反应动力学特性,近似地描述了挥发分火焰.提出新的简化模拟方法均相着火后挥发分燃烧的移动火焰锋面(MFFVC)模型,弥补了挥发分现有计算方法中未考虑颗粒边界层内挥发分均相着火及燃烧的不足.与挥发分现有计算方法、扩散控制的挥发分燃烧(DLVC)模型相比, MFFVC模型预报与考虑热解的扩展连续膜模型符合较好.  相似文献   

4.
对两种不同入口尺寸的急速混合管状火焰燃烧器开展了丙烷富氧燃烧特性研究,着重从火焰结构、燃烧范围、燃烧模式等,分析了燃料与氧化剂切向入口尺寸分别为0.5/0.5 mm(燃烧器A)及0.25/0.5 mm(燃烧器B)的丙烷燃烧特性,并基于Chemkin计算分析了内在机制。结果表明:在氧气浓度β≤0.5时,两者均能获得均匀稳定的管状火焰,火焰特征和燃烧范围相近;对于燃烧器A,随着β增加至0.7,化学反应时间缩短,掺混效果不足以维持火焰稳定;燃烧器B入口尺寸较小,入口速度更大,掺混更充分,在β=0.7时火焰仍稳定,β=0.8时火焰不均匀但仍稳定。此外,β≥0.7时,随当量比增加,燃烧器A、B均在低当量比和化学计量当量比附近出现了声不稳定现象,管状火焰区随β增加不断缩小。  相似文献   

5.
甲烷/富氧扩散火焰燃烧区域的分层特性研究   总被引:1,自引:0,他引:1  
本文对甲烷/富氧扩散火焰燃烧区域的分层特性进行了数值模拟和实验研究,结果表明氧化剂中氧浓度的增加加剧了火焰的分层现象(黄焰层与蓝焰层),使蓝色火焰变厚,并且使NOx生成大量增加;火焰面上的速度梯度主要影响黄色火焰厚度,蓝色火焰随着速度梯度的增加而减小, NOx生成也随之较少。对比温度及火焰结构还表明,研究中所采用的数值模拟方法可以正确地预测对向流扩散火焰特性。  相似文献   

6.
高浓度煤粉火焰对装有浓淡燃烧器的煤粉燃烧系统的着火具有十分重要的作用。本文在一简化的燃烧系统和一配备浓淡燃烧器的1 MW切圆煤粉炉内进行了大量试验,研究了煤质对最佳煤粉浓度C_(opt)的影响规律,在该最佳煤粉浓度下燃烧系统具有最高的火焰温度及最低的飞灰含碳.试验结果表明:对于所有的高浓度煤粉火焰均存在一最佳的煤粉浓度,着火特性差的无烟煤的最佳煤粉浓度显著高于着火特性更佳的烟煤,该最佳煤粉浓度随着煤质发热量Q与挥发分V乘积的增大而降低,并存在一经验公式C_(opt)=1.069-0.051·10~(-5)·V·Q。  相似文献   

7.
本文搭建了平面火焰携带流反应器系统,研究了不同煤粉条件下煤粉颗粒群湍流射流着火特性。实验表明,湍流射流速度下低挥发份煤着火表现出扩散状暗红色火焰形态;随挥发分含量的增大,火焰亮度增加,并且在一定高度处发展为颗粒群群燃着火。随给粉量的增大,着火延迟呈现先减小后增大的趋势,最佳给粉浓度为0.75~1.00 kg/m~3。随粒径的减小,加热速率更快,挥发分大量析出使得火焰亮度增加;并且颗粒间的相互作用增强,更早出现颗粒群的群燃现象。  相似文献   

8.
张志昊  宋蔷  姚强 《应用光学》2014,35(5):917-921
当使用激光诱导击穿光谱技术(LIBS)测量火焰场内碱金属元素时,等离子体内碱金属原子所发出的LIBS信号,会受到等离子体外火焰中基态碱金属原子的吸收,影响测量精度。基于Beer Lambert定律和CH4 空气火焰场内气态含K物质的热力学平衡原理,建立了火焰场内K元素LIBS信号的原子吸收模型,并分析了实际生物质颗粒燃烧K元素释放浓度范围内,火焰气氛、K元素浓度分布以及总K浓度对火焰原子吸收效率的影响。研究发现,随着O2/CH4的摩尔比值的增加,火焰中热力学平衡状态下K原子占总K的比例从约25%逐步降低,火焰原子吸收效率也从86.8%逐步降低。当O2/CH4的摩尔比值大于2时,火焰尾气中会存在剩余O2,此时火焰内K原子的吸收效率均低于13%。同时,火焰中K元素浓度分布以及总K浓度的合理调整亦对火焰原子吸收效率具有降低作用。在此基础上,提出了创造氧化性气氛、调整K浓度分布来降低火焰原子吸收效率和提高LIBS测量精度的解决途径。  相似文献   

9.
杨晋朝  夏智勋  胡建新 《物理学报》2013,62(7):74701-074701
建立了一维非稳态球形镁颗粒群的着火燃烧模型, 数值模拟镁颗粒群的着火和燃烧过程, 研究表明, 颗粒群着火首先发生在颗粒群边界, 随后初始的燃烧火焰会分离为两个, 一个向颗粒群内部传播, 一个向外部传播, 最终内部火焰消失, 外部火焰维持并控制着整个颗粒群的燃烧; 内火焰向颗粒群内部传播过程中, 传播速度会逐渐加快, 且火焰温度值呈逐渐降低趋势. 分析了颗粒群内部参数和环境参数对镁颗粒群着火燃烧的影响. 随颗粒浓度的增大, 颗粒群着火时间略有增长, 但火焰传播速度更快, 燃烧稳定时火焰球尺寸也更大. 颗粒群初温越高, 则颗粒群着火时间越短, 火焰传播速度也会加快, 但燃烧稳定时火焰球尺寸基本不变. 环境温度对颗粒群着火燃烧的影响较复杂, 环境温度越高, 颗粒群着火时间越短, 但火焰传播速度却越慢, 燃烧稳定时火焰球尺寸变化很小. 颗粒粒径和辐射源温度对颗粒群着火燃烧的影响较显著, 颗粒粒径越小或辐射源温度越高, 则颗粒群着火时间越短, 火焰传播速度越快, 燃烧稳定时火焰球尺寸也越大. 数值模拟结果与文献中试验结果相一致. 关键词: 粉末燃料冲压发动机 镁着火燃烧 颗粒群  相似文献   

10.
高光谱技术提供了空间和光谱维度的信息,同时基于传统黑体模型的实验技术和计算方法不适用于甲烷火焰的辐射特性,而火焰中自由基的高光谱信息反映了火焰结构、组分浓度分布等燃烧的多方面特征,能够为燃烧模型的完善提供依据。利用高光谱技术在不同当量比和不同流量下研究了甲烷预混火焰中自由基的空间和光谱特性。对不同当量比的研究表明,随着当量比的增加,火焰中心处的CH*和C*2自由基的辐射强度先增加后降低,而燃烧区域内二者的平均辐射强度一直增加,火焰中心处的点可以表征局部的燃烧状态,而燃烧区域内辐射均值表征热释率等整体燃烧状态,定量给出了两种方法的不同趋势。火焰中心处的CH*自由基辐射强度在当量比为1.01时达到峰值,而C*2自由基辐射强度在当量比为1.12时达到峰值,两种自由基的辐射峰值可以分别作为燃烧中反应强度和稳定性的判据。当量比可以由C*2和CH*辐射强度之比来表征,修正了C*  相似文献   

11.
通过沉降炉燃烧实验,研究了褐煤O2/CO2燃烧时可吸入颗粒物的生成和碱性金属元素在颗粒物中的分布特性.结果表明,燃烧气氛由O2/N2燃烧转变为O2/CO2燃烧时,亚微米颗粒物的生成量减少,但超细颗粒量增加.气氛对碱性金属元素分布的影响主要体现在亚微米颗粒范围内.与O2/N2燃烧相比,相同氧浓度下O2/CO2燃烧时所生成亚微米颗粒物中碱性金属向小粒径颗粒中富集.O2/CO2气氛下,低氧浓度燃烧时碱性金属元素对亚微米颗粒物的生成贡献大,而增加氧浓度其在亚微米颗粒物中质量份额则减小.  相似文献   

12.
基于标准20 L球形爆炸装置,系统研究了6种不同粒径微米级铝粉的爆炸特性,并结合SEM和XRD对爆炸产物的微结构特征进行了分析。研究结果表明,相同粉尘浓度条件下爆炸超压与颗粒粒径表现为二次函数的关系,而爆炸超压上升速率则随着粒径的减小按指数增加;颗粒的燃烧时间与颗粒的粒径均表现为沿幂函数增加;相同粉尘浓度条件下细颗粒铝粉爆炸过程主要受氧气扩散的控制,而大颗粒铝粉颗粒的爆炸过程则主要受铝粉颗粒的熔融控制。  相似文献   

13.
利用纹影法,在定容燃烧弹中研究了较高当量比和不同初始压力下氢气空气预混合气的燃烧特性,分析了两参数对其燃烧特性的影响。试验结果表明,本实验条件下的氢气空气预混合物燃烧过程中,主火焰两侧出现挤流火焰,且挤流火焰的传播明显快于主火焰;根据出现挤流火焰与否、两侧挤流火焰相遇与否、实验时的热力参数、燃料浓度等条件,燃烧过程可分为四个阶段;在本文的实验条件下随着当量比增加,挤流火焰燃烧速度加快,其倾向于自燃时的多点燃烧;随着初始压力降低,挤流火焰逐渐出现在主火焰层流燃烧阶段。  相似文献   

14.
对生物质在链条炉中的燃烧辐射传热特性进行数值模拟研究,并与烟煤的燃烧辐射传热特性进行对比。结果表明:与烟煤相比较,生物质燃烧温度较低,最高温度约为2000 K,烟煤的最高温度约为2200 K,生物质温度分布比较均匀;生物质的辐射热流密度低于烟煤,生物质辐射热流密度为120~320 kW/m2,烟煤辐射热流密度为150~440 kW/m2,生物质和烟煤的的辐射传热系数比较接近,在120~240 W·m-2·K-1之间。烟煤的玻尔兹曼特征数大于生物质。  相似文献   

15.
煤气化中NO_x及其前驱物释放规律研究   总被引:1,自引:0,他引:1  
采用U型管反应系统,研究了氧浓度、气流速率和气化温度对神木煤气化过程中NO_x及其前驱物的释放规律.研究发现:气化时生成的HCN和NH_3总量比热解时大幅下降,表明O_2的引入抑制了H自由基的可获得性.随着氧浓度的增加,NO的收率先减后增,而NO_2收率几乎没有变化.氧浓度较低时,生成的高浓度CO阻止了挥发分氮向NO的转化.气流速率对含氮气相产物释放影响各不相同.低温气化产物以NO_2和HCN为主,NO_2主要来自进样期挥发分的缓慢氧化,而高温气化产物中的NH_3的生成主要来源于焦炭氮.  相似文献   

16.
乙醇柴油混合燃料碳烟特性可视化研究   总被引:2,自引:0,他引:2  
在一台电控共轨光学发动机上,采用高速摄影法,对不同掺混比例的乙醇柴油混合燃料进行研究,获取了缸内燃烧火焰图像,通过双色法得到表征碳烟总体分布的KL因子,分析了乙醇这种含氧生物质燃料对缸内燃烧过程和碳烟生成特性的影响。研究结果表明,随着乙醇掺入比例的增加,滞燃期相对延长,燃烧持续期缩短,火焰的亮度和分布面积都随之下降。KL因子的最高浓度降低,碳烟浓区的分布区域减小,碳烟的氧化进程加快。  相似文献   

17.
煤颗粒的热膨胀破碎特性直接影响流化床锅炉的运行效率.本文利用热机械分析仪(TMA)测定了不同种类不同密度的型煤和原煤的热膨胀特性,并对部分破碎微观形貌进行了FSEM观察;通过旋转炉内的燃烧试验研究了热膨胀特性和破碎的关系.研究表明,煤颗粒在燃烧过程中其热膨胀破碎主要发生在挥发分析出阶段;内部挥发分的析出会使颗粒内压增大而产生膨胀,进而产生细小裂纹并破碎;挥发分越高,颗粒密度越大,其热膨胀形变率越大,越容易发生破碎现象;主要挥发分析出后热膨胀引起的破碎可以忽略.  相似文献   

18.
聚甲氧基二甲醚(PODE)是一种有潜力的柴油替代燃料,目前针对PODE的研究更多集中在发动机台架试验,相应的基础喷雾燃烧研究较少,制约了其在动力装置中高效清洁燃烧性能的提升。羟基(OH)性质活泼,大量存在的区域通常认为是高温反应区域。利用羟基光谱可以获得火焰结构、燃烧反应位置以及热释放速率等重要参数。环境氧浓度对火焰结构有很大影响,也是控制燃烧反应速率和污染物排放的重要参数。因此,在一台光学定容燃烧弹上,首先利用羟基的自发光光谱测量,研究了宽环境氧浓度变化(15%~80%)对PODE喷雾火焰浮起长度的影响,进一步利用阿贝尔逆变换方法将羟基自发光光谱强度由积分值反演为点位值,研究了富氧条件下(40%~80%)氧浓度变化对PODE喷雾羟基分布的影响。研究结果表明:环境氧浓度由15%增至40%,PODE火焰浮起长度迅速缩短;氧浓度进一步增加至80%,火焰浮起长度下降趋势逐渐变缓,直至基本不变;相同氧气浓度下PODE火焰浮起长度明显小于柴油。反演后的羟基光谱分布特征表面,富氧条件下PODE羟基光谱的高光强区域主要集中于喷雾边缘扩散火焰薄层中,同时,局部温度的显著提升使得羟基光谱强度在预混反应区下游附近达到最大;羟基光谱高光强区域随氧气浓度增加逐渐向火焰中上游区域迁移,并且其分布表现为轴向上更短,径向上更窄;在火焰达到准稳态时,相较40%氧气浓度条件,60%和80%氧气浓度下的羟基光谱强度在火焰中下游明显减弱,表明高的环境氧浓度下喷雾上游的燃油高浓度区域更快的参与到剧烈的燃烧反应中。  相似文献   

19.
生物质热解是实现生物质废弃物有效处理及生物质材料高效利用的重要途径之一,因此对生物质热解过程及其机理进行研究具有极大的现实意义。木材作为一种来源广泛的可再生材料也是众多生物质热解原料中的一种,由于组成成分等多方面的差别,不同树种的热解特性具有明显差异。然而,同一种木材的心材与边材由于在组织构造、化学组成及其含量等方面有着明显不同,因此在热解特性和产物方面也存在一定的差异,该工作即对此进行深入研究。试验以心、边材区分明显的常见园林绿化物圆柏为试验材料,通过TG-FTIR联用技术分别得到其心、边材热解过程中的热重曲线和挥发分的红外光谱谱图并对其进行分析。结果表明,纤维素、半纤维素、木质素和抽提物含量对心、边材热解特性影响显著。由于圆柏心材半纤维素、木质素含量较高,在热解前期和热解后期具有比边材更大的失重率,而较高的抽提物含量则在一定程度上增加了其在反应中期的失重率,减小了该范围内心、边材失重率的差异;边材纤维素含量较高,因此其在300~380 ℃,失重明显,在DTG曲线中的最大失重速率也较高。在红外图谱中,心、边材热解所产生的挥发分种类几乎相同,但在数量上有差异,当热解达到最大失重速率时,所产生的挥发分明显增加,且整个过程中边材产生的有机酸类化合物更多,而心材相对产生更多的水和CO2。  相似文献   

20.
本文试图从非稳定射流火焰的燃烧噪声角度来研究火焰中的微团特性。定义火焰特征反应时间来反映火焰的化学反应动力学和火焰流场流动动力学特性。通过自相关系数测量火焰涡团的特征反应时间,结果表明:相同的燃气流量下,特征反应时间与射流速度成反比;特征反应时间随射流速度的变化斜率与燃气流量相关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号