首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
为了有效回收内燃机的废热,基于超临界CO2(S-CO2)再压缩循环,提出了一种新型的S-CO2动力循环,并建立了相应的热力学模型,以分析系统的热力学性能,研究透平入口温度和系统压力对循环性能的影响。结果表明,在设计工况下,系统的净输出功为33.06 kW,热效率和效率分别可以达到35.86%和67.90%,余热回收率为58.70%。随着高压透平入口温度的升高,循环效率增加而净功减少。随着低压透平入口温度升高,循环效率和净功均增加。此外,存在再压缩机出口压力使净功和循环效率达到最大。  相似文献   

2.
本文对比了再压缩超临界CO2 (S-CO2)循环、蒸汽朗肯循环、He布雷顿循环分别应用于铅基堆的最优热学性能,明确了S-CO2循环与铅基堆结合较传统循环的热力学优势。为进一步提高再压缩S-CO2循环的效率,以跨临界CO2 (T-CO2)循环为底循环构建了再压缩S-CO2/T-CO2复合循环,探讨了不同顶循环透平入口温度、压力和压缩机入口温度条件下系统性能的变化规律,对比了S-CO2/T-CO2复合循环和S-CO2循环的热学性能。结果表明:铅基堆再压缩S-CO2循环发电系统较传统循环形式具有更高的热效率;构建的S-CO2/T-CO2复合循环能够有效提高S-CO2循环的效率,在所研究参数范围内,S-CO2/T-CO2复合循环的热效率和效率比S-CO2循环分别最大可提高约4.8%和8.3%;再压缩S-CO2循环和S-CO2/T-CO2复合循环热学性能随顶循环关键参数变化规律具有一致性。  相似文献   

3.
在高温太阳能光热发电的应用背景下,本文研究了引入压缩机级间冷却的超临界二氧化碳再压缩布雷顿循环改进构型的性能提升潜力;在建立热力学模型的基础上,利用遗传算法对改进构型进行了参数优化,并在基准工况下与典型再压缩循环进行了性能对比;基于图像分析方法揭示了压缩机级间冷却提升循环性能的机理。结果表明:对再压缩S-CO2循环而言,引入主压缩机级间冷却将可能提升循环效率,改善循环性能,而再压缩机级间冷却的引入则无益于循环性能的提升。级间冷却式再压缩循环性能提升的主要原因在于冷源放热损失与高温回热过程耗散的降低。基准工况下,改进构型循环比功最高可提升22.87%,循环热效率与循环效率最高可分别提升2.767%与3.389%。  相似文献   

4.
冷热电联产系统具有潜在的能源、环境和经济效益,受到人们广泛关注。本文提出了一个由超临界压力CO_2布雷顿循环和热驱动跨临界喷射制冷循环组成的冷电联产系统,建立了系统的热力学能量和拥分析模型,获得了主要运行参数对系统性能的影响规律。当制冷剂为R1234ze时,系统最高热效率0.60,■效率0.51。■损最大的四个部件依次是回热器、喷射器、压缩机和透平,而喷射器、冷凝器和蒸发器■效率较低。研究表明增大透平入口压力和减小透平出口压力均可增大系统冷电输出和提高热、■效率;循环泵出口压力对冷量和耗功产生共同影响,系统存在最优循环泵出口压力。  相似文献   

5.
本文将简单回热,预压缩,再压缩,部分冷却和中间冷却超临界二氧化碳(S-CO_2)布雷顿循环分别与塔式太阳能热发电(SPT)系统结合,建立了直接式S-CO_2塔式太阳能热发电系统的光-热-功一体化模型,对5种S-CO_2循环下整个SPT系统在不同透平入口温度下的热力学性能进行了对比分析。结果表明:随着透平入口温度的增大,整个SPT系统的效率在650℃附近具有最大值,表明直接式S-CO_2塔式太阳能热发电系统的运行温度并非越高越好;在本文研究的透平入口温度范围内(500~800℃),中间冷却和部分冷却S-CO_2循环下的SPT系统具有最高的效率,但系统也最为复杂;再压缩S-CO_2循环下的SPT系统在高温范围(650~800℃)具有较高的效率,且系统比较简单,具有巨大的应用潜力。  相似文献   

6.
布雷顿-逆布雷顿联合循环最优性能   总被引:2,自引:0,他引:2  
用有限时间热力学研究布雷顿-逆布雷顿联合循环的热力学性能.调整质量流率和底循环压气机的入口压力优化该联合循环的功率和效率.分析表明,分别存在最佳的燃料流率和底循环压气机的最佳入口压力使循环输出功率最大,最大功率对应顶循环压气机压比有附加的最大值.给定质量流率和动力装置尺寸的情况下,通过合理分配顶循环压气机入口和底循环透平出口之间的流通面积,循环输山功率和热效率可以得到再次优化.  相似文献   

7.
为了深入研究逆布雷顿空气制冷机的降温特性与制冷性能,论文首先采用CFX数值模拟方法,对透平膨胀机冷端通流部分的流动与热力学过程进行了数值模拟,进一步对整机的热力性能进行了分析;在此基础上探讨了制动功率对膨胀机降温特性影响;并改进了逆布雷顿空气制冷机综合实验台,采用风机回路闭式循环,进行了定制动压力和定特性比两种典型制动策略下制冷机降温性能的实验研究。结果表明:通过调节风机闭式循环制动压力来匹配膨胀机工况的变化方案可行,理论预测与实验结果吻合较好;透平膨胀机的绝热效率62%,在120 min内制冷机最低无负荷出口温度达到了-170℃;采用透平膨胀机的逆布雷顿空气制冷机具有优异的制冷性能。  相似文献   

8.
有机朗肯循环(ORC)是将中低品位能源转化为有用功的有效途径。传热过程不可逆损失大是导致ORC系统效率低的重要原因,基于混合工质的有机闪蒸循环(OFC)可以同时优化蒸发器和冷凝器换热过程的温度匹配,有望进一步提升ORC系统效率。本文选取R245ca/cyclopentane、pentane/isohexane等4种混合工质,通过热力学分析对比了200℃的饱和水为热源驱动下的混合工质ORC和OFC性能,获得了混合工质质量分数和热源出口温度对系统效率的影响。发现降低热源温度能显著提高OFC系统效率,而ORC系统存在最优热源出口温度。优化热源出口温度后,混合工质OFC系统效率能与ORC系统相当甚至在一定质量分数范围内超越ORC系统,其中,混合工质neopentane/cyclopentane质量分数为0.6时,OFC最高效率达到46.87%。  相似文献   

9.
本文研究了一种完全由余热驱动的吸收压缩复合式低温制冷系统。该系统由混合工质动力子循环和吸收压缩复合式制冷子循环有机耦合而成,模拟计算结果表明,该系统在制取-55℃冷量时的整体性能系数和效率分别达到了0.357和28.02%,分别比参比系统提高了19%和57.77%。通过分析和循环耦合分析,揭示了该系统的节能机理。另外,还研究了动力子循环工质浓度、透平入口压力和压缩机出口压力对系统热力性能的影响。结果表明,为了保证较高的热力性能,这三个影响因素均存在最佳值,且其中压缩机出口压力最为敏感。经济性分析指出,新系统比投资比参比系统相对减小了12.23%。本研究为分布式供能系统提供了新的余热利用方法。  相似文献   

10.
以超临界二氧化碳简单回热型布雷顿循环为研究对象,以核电站为应用背景,详细论述了系统循环模型与关键器部件的效率模型建立方法,并利用该模型初步分析了各类工程因素对布雷顿循环效率、系统体积的影响,分析结果表明,循环效率、系统体积对温度、压力、涡轮机械效率、回热器等参数的敏感性存在较大差异,其中增加透平入口温度对缩减系统总体积最为有效,需要建立完善的系统分析模型以进行S-CO2系统的优化设计。  相似文献   

11.
环保工质CO_2作为制冷剂用于空调领域再次受到广泛关注。文中对CO_2跨临界循环进行了热力学理论分析,分析结果表明:循环系统存在最优高压压力,使得其COP达到最大值;蒸发温度的升高或者冷却压力的降低都能提高COP,但都会降低效率;实际运行系统中,应该尽可能提高蒸发温度或者降低气体冷却器的出口温度。  相似文献   

12.
提出了一种基于超音速两相膨胀的新型CO2制冷循环,开展热力学分析和模拟计算.结果 显示:在空调温区工况,新型CO2制冷循环COP较现有性能相对最优的CO2跨临界制冷循环COP提升了63.2%,且系统运行高压大大降低;自然工质气体添加剂对循环性能有较大影响,加入C2H6和N2后制冷温度更低,加入C2H6可提高相对卡诺效率,且随加入量的增加,效果越显著,当加入30%的C2H6时,可获得最大相对卡诺效率为0.93,较单一CO2的相对卡诺效率提高了26%,而加入N2则降低相对卡诺效率;超音速两相膨胀机入口压力、入口温度和旋流分离段出口压力均对循环性能有较大影响,可调节以上参数提升循环制冷表现.研究表明:新型CO2制冷循环具有较好的原理可行性,为CO2有效利用、人工合成制冷剂替代、CO2高效制冷提供一种可能的参考.  相似文献   

13.
本文建立一种基于内燃机余热利用的冷电联供系统,构建了热力学数学模型,研究了关键热力参数对联供系统热力性能的影响。结果表明:布雷顿循环透平膨胀压比的降低、压气机进口温度的降低及透平进口温度的增加,均有利于系统热力性能的提升;有机朗肯循环透平进口压力的增加能使得系统的电能输出及总效率增加;喷射式制冷循环喷射器进口工作蒸气压力增加能提高制冷量及制冷效率。为了获得联供系统的最佳设计参数和性能,采用遗传算法,对系统进行单目标优化,得出此联供系统最大效率能达到54.22%,此时电能输出为31.58 kW,制冷量输出为3.15 kW,系统能较好地回收内燃机余热。  相似文献   

14.
本文提出了一种采用混合工质制冷的液化空气储能循环,构建了完整的液化空气储能热力系统循环流程以及热力计算分析模型。原料气由单级压缩机驱动的混合制冷机液化,采用丙烷进行预冷,利用遗传算法进行组分优化,开展了设计工况下系统热力学研究。典型工况下,系统的电–电转化效率ηC为43.89%,液化比功耗SPC为0.2306 k Wh·L-1,系统品质因数FOM为74.64%。研究发现随原料进气压力的增大,ηC和FOM均增大,SPC逐渐减小。与基于Claude液化流程的储能系统进行对比,结果表明本文提出的系统循环性能较优,可为实际工程应用提供参考和依据。  相似文献   

15.
《工程热物理学报》2021,42(10):2544-2552
超临界二氧化碳(SCO_2)布雷顿循环发电系统与传统火力发电系统相比,具有系统尺寸小、循环效率高、工质易获取等优势。本文首先采用Aspen HYSYS与Aspen Plus软件分别建立了三种循环模型:简单循环、再压缩循环和分流再压缩循环;并使用三种物性方法对每种循环进行了模拟;对比实验室的数据,研究了不同物性方法的模拟精确度,数据表明Aspen Plus软件下的REFPROP物性计算方法精确度较高。然后在不同的工况参数下,使用该物性方法计算对比了三种循环在相同工况下的循环效率,结果证实:为获得高效率,回热尤为重要。最后,以再压缩循环模型为基础,在不同的回热条件下,研究了循环中五个主要参数对循环效率的影响。本文结论可为SCO_2的再压缩循环模型设计提供参考。  相似文献   

16.
在名义工况下建立热泵热水器系统的热力学循环模型,利用EES分别计算三种HCs纯工质及其与HFO1234yf混合工质的热泵性能。结果显示:R1234yf/R600(Z_1)和R1234yf/R600a(Z_2)均在质量分数(10/90)处出现最大制热COP值,分别为3.413和3.305,R1234yf/R290(Z_3)则出现单调递减的趋势。在最优配比(10/90)情况下,混合工质Z_1系统排气温度为76.26℃,冷凝压力为0.681 MPa,压比为6.284,制热量为193.6 J/g,■效率为0. 212;系统Z_2、Z_3及纯工质R600、R600a、R290的制热性能系数COP分别较Z_1降低3.06%、3.09%、13.94%、5.10%、5.66%。Z_1具有较好的热力学性能,有望成为替代工质。  相似文献   

17.
为优化CO_2热泵热水系统的循环性能,分析了CO_2/R1270, CO_2/R290, CO_2/R32, CO_2/R41混合制冷剂的饱和蒸汽压力、临界压力、温度滑移、COP,最终筛选出符合要求的R41。针对CO_2/R41混合制冷剂的单位制冷量/制热量、压缩机的压缩比、排气温度进行进一步实验分析,结果表明:CO_2/R41(70/30)系统的COP比纯CO_2系统增加7%,在设定工况下CO_2/R41(50/50)系统单位质量制冷量增加26.1%,单位质量制热量增加18.3%。CO_2/R41混合物可有效降低跨临界循环压缩机的压缩比及排气温度。  相似文献   

18.
为进一步研究跨临界CO_2热泵的系统性能,针对所设计CO_2热泵系统进行实验。实验结果表明:在风机频率一定时,系统热负荷、压缩机轴功率、系统出风温度均随压缩机频率的增大而增大。蒸发温度从-2℃升至4℃,COP增幅为26%,CO_2在气冷器出口温度降低10℃左右时,系统COP增幅大于30%。实验工况下跨临界CO_2热泵系统出风温度变化范围在50℃-100℃,在获得大于75℃出风温度时,热力学第二定律效率超过30%,CO_2气冷器出口温度、高压侧压力、蒸发温度的升高都会提高系统热力学第二定律效率。  相似文献   

19.
对两台常温热泵压缩机—开启式活塞式压缩机和全封闭涡旋式压缩机进行了中高温热泵工况、中高温热泵工质下的性能实验研究。实验工况范围为冷凝温度75~95℃、循环温升35~45℃,实验工质为HFC245fa。结果表明,两台压缩机的排气温度均在允许范围内,两台压缩机的综合效率值与各自在常温热泵工况、原设计工质下的综合效率值相比无明显降低。  相似文献   

20.
提出一种新型自复叠制冷循环,通过设置喷射器,利用高压高沸点液态制冷剂引射低压低沸点气态制冷剂,充分回收高沸点组分的节流损失,提高压缩机吸气口处低沸点组分的吸气压力并获取更低制冷温度。建立了组成系统部件热力学数学模型,分析了冷凝温度、混合工质配比和压缩比等参数对传统自复叠制冷循环和新型自复叠制冷循环的工作特性影响。研究表明,新型自复叠制冷循环制冷效率与传统自复叠制冷循环相当,但前者所获得制冷温度比后者所获得制冷温度可降低约10~20℃  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号