首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
利用可再生清洁能源将CO2转化为CO和其他小分子是合成含碳燃料的可观方法之一.间歇性可再生能源存储的重要策略之一是将二氧化碳进行电化学还原.选择具有高活性和稳定性的电催化剂对于电化学还原CO2至关重要.在这项研究中,我们使用简单的电沉积方法合成了具有纳米晶枝状结构的CuAu合金电极.各项表征显示原子比约为1∶1的CuA...  相似文献   

2.
石油、天然气和煤等化石能源的转化利用不可避免排放大量的CO_2,造成一系列生态和环境问题.CO_2电化学还原可以在温和反应条件下将CO_2转化为CO或甲酸等,近年来受到研究者广泛关注,但因CO_2具有很稳定的化学结构,CO_2电化学还原要求催化剂具有高的活性,选择性和稳定性.贵金属如金和钯可以有效地将CO_2转化为相应的燃料如CO和甲酸等,但贵金属昂贵的价格限制了其大规模应用,所以迫使人们寻找非贵金属催化剂来替代它们.铟及其合金被应用于CO_2电化学还原生成甲酸,但在低过电位下,这些催化剂的电流密度和选择性都不理想.铜基催化剂也能催化CO_2电化学还原生成甲酸,但在短时间内稳定性较差.因此,需要进一步提高In和Cu催化剂上CO_2电化学还原的电流密度和稳定性.一种可能的解决方案是构建Cu-In双金属催化剂,通过两者的协同作用,有望提升在低过电位下CO_2电化学还原生成甲酸的电流密度和稳定性.在本工作中,我们通过氢气模板法制备出具有树枝状结构的Cu,然后在其表面均匀电沉积金属In.通过两步电沉积法制备出一种具有树枝状结构的Cu-In二元金属催化剂.控制电沉积In的时长分别为1.5,7.5,15,30和60 min.根据SEM及EDX元素分布图谱可知,随着电沉积In时间的增加,In在Cu表面的覆盖率逐渐增高.我们还研究了In的电沉积时间与其电化学活性表面积(ESA)之间的关系.结果表明,In的电沉积时间与其电化学活性表面积成正比,且当电沉积时间达到30 min时,电极具有最大的电化学活性表面积.具有树枝状结构的Cu-In-30催化剂ESA数值为8.7 cm~2,而不具备树枝状结构的In-30催化剂的ESA数值仅为2.4 cm~2.在-0.65 V vs.RHE至-1.05 V vs.RHE电位窗口中,与其它催化剂相比,Cu-In-30催化剂上CO_2电化学还原生成甲酸的法拉第效率最高可达87.4%.树枝状结构的Cu-In-30催化剂由于具有开放的三维结构,所以能够暴露出更多的活性位,从而提高了催化剂的电化学性能.在-0.85 V vs.RHE电位下,甲酸分电流密度可达42.0 m A cm~(-2),且具有较高的电化学稳定性(12 h).而不具有树枝状结构的In-30催化剂生成甲酸的法拉第效率为57.0%,且甲酸分电流密度为4.6 m A cm~(-2).  相似文献   

3.
利用低品阶的可再生电能,将二氧化碳(CO_2)电化学还原生成高附加值的化学品或燃料,既可以"变废为宝"、减少CO_2排放,又能将可再生能源转变为高能量密度的燃料储存,具有重要的现实意义。电化学还原CO_2的研究,是目前世界范围内的研究热点,许多标志性的重要研究成果不断涌现。本文首先简要介绍了CO_2电化学还原的基本原理,然后概述了近5年来在其电催化剂材料和反应机理相关的实验与理论研究方面的昀新研究进展,昀后对其发展趋势进行了展望。  相似文献   

4.
电催化剂的结构决定其性能.从微观层面研究表面结构与催化性能之间的内在联系和规律是设计和研制高活性、高稳定性、高选择性电催化剂的基础.本文以本研究组关于氢和氧的吸脱附、乙二醇氧化和CO2还原的研究结果为主,综述了电催化剂表面结构和性能调控方面的研究进展.给出面心立方晶体不同晶带上铂单晶电极的循环伏安特征,电催化性能和规律,在此基础上创建的金属纳米晶体表面结构控制和生长的电化学方法,以及对具有开放结构、高催化活性和高稳定性的Pt和Fe纳米晶催化剂的形状和表面结构控制合成.  相似文献   

5.
韩布兴 《物理化学学报》2022,38(8):2012011-15
<正>电化学还原二氧化碳(CO2)可将温室气体转化为高附加值的碳基燃料和化学品,为解决能源与环境危机提供了一种可持续途径1–3。金属纳米材料是电还原CO2的一类高效催化剂,具有广阔的应用前景。例如,金(Au)基纳米材料是常用的制备一氧化碳(CO)产物的电催化剂~4,而铜(Cu)基纳米材料则可以将CO2转化为多种碳氢产物~5。  相似文献   

6.
《电化学》2017,(3)
温室气体CO_2的绿色高效转化利用是当前的研究热点.其中,有机物的电化学羧化反应是CO_2利用的有效途径.温和条件(常温常压)下,有机底物电还原生成的碳负离子可以捕获体系中的CO_2,进而合成具有高附加值的有机羧酸类化合物.本文重点介绍了作者课题组在电羧化反应方面的研究进展,包括各类电活性基团物质的电羧化反应以及不对称电羧化反应.  相似文献   

7.
CO_2的化学转化具有环境及科学双重研究意义.CO_2具有很高的化学稳定性,加氢还原是一种有效的转化途径.其中将CO_2选择性还原为CO,即逆水汽变换(RWGS)反应(CO_2+H_2→CO+H_2O),具有重要的理论意义和应用价值:(1)CO作为合成气的重要原料,可以通过F-T合成生产更有价值的液体燃料;(2)H_2可通过可再生能源电解水制取,实现了全过程的零排放碳循环利用.从热力学角度分析,RWGS反应是一个吸热反应,高温有利于平衡转化率的提高.从动力学角度,一个对正反应有活性的催化剂可同时催化逆反应进行.可还原性载体负载贵金属催化剂,如Pt/Ce O_2,Au/Fe Ox,Au/Ce O_2等,具有很好的低温WGS催化活性,但它们在RWGS反应上的研究较少.我们制备了Ce O_2负载纳米Au催化剂(HRTEM表征结果表明金高度分散于Ce O_2载体表面,粒径为4–5 nm),其在常压CO_2加氢还原为CO反应中表现出优异的低温活性,分别在450°C,CO_2/H2=1,WHSV=12000 m L/(h·g),及400°C,H_2/CO_2=1,WHSV=6000 m L/(h·g)条件下,CO_2转化率接近平衡转化率,且CO的选择性为100%.随着H2/CO_2比例增加,CO_2转化率明显提高,且维持H_2/CO_2为1的化学计量比反应.通过原位漫反射红外光谱与质谱相结合的技术,研究了Au/Ce O_2催化剂上的RWGS反应路径:Au/Ce O_2催化剂表面形成了甲酸盐中间物种,它的消耗伴随着CO和H_2O产物的生成.说明Au/Ce O_2催化剂遵循中间体机理,这应该是其具有优异低温RWGS反应性能的微观机制.  相似文献   

8.
基于电化学反应的能源储存与转化技术为全球能源结构的转型提供了一条绿色、 可持续的途径, 高效的电催化剂在其中扮演着重要的角色. 得益于在物理、 化学性质上的独特优势, 单原子催化剂在电催化能源转化方面展现出巨大的应用前景. 本文综合评述了单原子催化剂的合成及其能源电催化应用的研究进展, 介绍了单原子催化剂的常见表征手段, 总结了单原子催化剂的合成方法(湿化学法、 高温热解法、 原子沉积法、 电化学沉积法等), 并介绍了该类材料在氧还原、 二氧化碳电还原、 电解水及氮气电还原反应中的研究进展, 重点探讨了催化剂微观结构与其性能之间的关系, 最后, 对单原子能源电催化领域所面临的挑战进行了总结, 并对该领域未来的发展方向进行了展望.  相似文献   

9.
表面结构控制和表面异种金属修饰是调控催化剂反应性的重要方法。因此,我们结合高指数晶面结构的高反应性与表面修饰异种金属,合成具有{730}高指数晶面的钯二十四面体纳米晶,并通过循环伏安扫描电沉积法得到Ru修饰的钯二十四面体纳米晶。电化学测试结果表明,低的Ru覆盖度(θ_(Ru)=0.08)可显著提高对碱性介质中甲醇电氧化的催化性能。电化学原位红外光谱结果表明,少量Ru的修饰没有减少CO的生成,而是促进了低电位下甲醇氧化成甲酸根。  相似文献   

10.
通过分步电沉积法制备碳布(CC)负载高致密Sn/SnBi合金催化剂:首先在CC上电沉积致密Sn颗粒,而后利用酸性电解液部分溶解Sn为Sn2+离子,实现在Sn颗粒表面共沉积SnBi合金枝晶,随后经过原位化学氧化及电化学还原步骤将SnBi合金枝晶转变为SnBi合金纳米颗粒(SnBi NPs)。得益于Sn提供形核位点,SnBi枝晶在碳织物表面垂直致密生长,并通过后续氧化还原转化实现了直径约20 nm的SnBi合金颗粒在CC上致密均匀生长。CC/Sn/SnBi NPs三维电极在-1.08 V(vs RHE)下显示出较高的电催化还原CO2活性,电流密度高达36 mA·cm-2且甲酸盐产物选择性为94.9%。同时,在连续12 h恒电压测试中性能未发生衰减,表明电极具有良好的稳定性。  相似文献   

11.
在室温条件下, 采用超声辅助电化学方法合成了几种三维铂纳米电催化剂. 利用透射电子显微镜(TEM)、X射线粉末衍射(XRD)以及电化学测试对该三维铂纳米电催化剂进行了表征. 结果表明, 这些铂纳米电催化剂的形貌、结构可以通过添加不同的形貌控制剂来调控, 在水溶液、聚乙烯吡咯烷酮(PVP)溶液和十六烷基三甲基氯化铵(CTAC)溶液中分别得到了立方海绵状铂、分枝状铂和球形多孔状铂. 其中, 球形多孔状铂纳米电催化剂由于其多孔的结构, 因此具有更高的电化学活性面积, 对氧气还原和甲醇氧化反应具有更好的催化作用.  相似文献   

12.
开发碱性体系的高效低成本析氧电催化剂是由可再生能源转化制氢的关键。本研究通过在泡沫Ni基底上原位电化学沉积的方法制备了花瓣状NiFeO_xH_y和NiFeO_xH_y/rGO复合催化剂用于析氧反应。花瓣状的结构不仅明显提高了催化剂的比表面积,而且暴露了更多的层状边缘和缺陷,进而增加了催化剂的活性中心。还原氧化石墨烯的加入进一步提升了催化剂的电导和析氧电催化性能,通过优化NiFeO_xH_y/r GO在1 mol/L KOH溶液中的析氧性能为:过电位200 mV(10 mA/cm~2)、Tafel斜率29.11 mV/decade,并且保持了较好的稳定性。  相似文献   

13.
罗瑾  杨乐夫  陈秉辉  钟传建 《电化学》2012,18(6):496-507
质子交换膜燃料电池作为重要的电化学能源转换装置,在提高能量转换效率、减少环境污染等方面具有诱人的前景.然而,阴极氧还原过电位较大、活性较低、稳定性差,且铂基催化剂昂贵,使该燃料电池难以商业化.纳米结构电催化剂的发展有望解决此难题。对纳米合金电催化剂其组分和结构的设计是开发高活性、高稳定性和低成本的燃料电池电催化剂的重要因素.本文综述了近期由分子设计和热化学控制处理法制备的三元纳米合金电催化剂对燃料电池氧还原反应催化性能的最新进展.该方法可控制纳米合金的尺寸、组成以及二元和三元纳米催化剂的合金化程度.以高活性的三元纳米合金催化剂PtNiCo/C为例,综述了在设计燃料电池电催化剂时结构和组成的纳米级调优的重要性.PtNiCo/C电催化剂的质量比活性远高于其二元合金催化剂和Pt/C商业电催化剂.三元电催化剂的催化活性可通过控制其组成来调节.文章还讨论了三元纳米合金催化剂的结构及其协同效应对增强其电催化性能的影响.  相似文献   

14.
王敏  解琦  陈会敏  刘光波  崔学晶  姜鲁华 《催化学报》2021,42(12):2306-2312
利用可再生电力能源将CO2电还原(CO2RR)为高附加值燃料和化学品(CO、甲酸盐和碳氢化合物等)是一种高效、绿色的CO2资源化利用新技术.然而,由于CO2分子中双键难以活化,且存在析氢竞争反应,即使对于CO2电还原为CO这一简单反应,除少数贵金属(Au、Ag和Pd及其合金)外,当前大多数电催化剂对产物CO的选择性和活性仍较低.因此,开发高效、稳定且廉价的CO2RR催化剂具有重要意义.过渡金属Ni储量高、成本低,是潜在的CO2RR催化剂.然而,受限于Ni对*H及*CO等中间物种相对强的吸附能力,Ni基催化剂催化生成产物CO的活性和选择性较低.近年来研究表明,通过对Ni基材料进行表面修饰,可以调控Ni表面与中间物种的吸附强度,从而有效提升Ni基催化剂对CO2RR反应的活性和选择性.鉴于此,本文通过N,O共调控的策略对负载于N掺杂介孔碳上的Ni纳米颗粒进行表面修饰,制得的N,O-Ni/CMK3催化剂能够高效、高选择性地将CO2电还原为CO.X射线衍射、高角度环形暗场扫描透射电子显微镜和X射线光电子能谱等表征结果表明,N,O-Ni/CMK3中的Ni纳米颗粒由金属Ni核和N掺杂的NiO壳组成,即Ni纳米颗粒表面被N,O共调控,这种独特的表面使其表现出与金属Ni不同的CO2RR催化性能.电化学测试结果表明,在0.5 M KHCO3电解液中,N,O-Ni/CMK3催化剂表现出较好的选择性(生成CO法拉第效率达97%)、活性(CO分电流密度为13.01 mA cm?1)和转换频率(4.25 s?1).表征结果表明,N,O共同调控的Ni是该催化反应的活性中心.此外,得益于N,O共调控的Ni表面,N,O-Ni/CMK3催化剂比O调控的Ni催化剂具有更好的电化学稳定性.本文通过调节Ni催化剂的表面化学环境来调控催化剂与反应中间物种的吸附强度,显著提高了Ni基催化剂对CO2RR反应的催化活性和CO选择性,为开发高活性、高选择性的过渡金属催化剂提供了新思路.  相似文献   

15.
采用水热法合成了具有高活性的磷化镍纳米晶(Ni2P), 并合成了氮、 硫共掺杂石墨烯负载磷化镍纳米催化剂(Ni2P/NSRGO). 对该催化剂的结构和形貌进行了表征, 并研究其电催化析氢性能. 电化学测试结果表明, Ni2P/NSRGO复合电催化剂的析氢性能优于Ni2P/RGO催化剂, 具有较小的Tafel斜率(35 mV/dec)、 较低的过电位(η10=140 mV)和良好的稳定性.  相似文献   

16.
以采用改进的气相沉积法制备的具有规整{1010}晶面的氧化锌纳米线为载体,合成了氧化锌纳米线负载钯催化剂,考察了还原温度和负载量对催化剂表面形成Pd Zn合金过程的影响,并通过适当的后处理过程制备了氧化锌纳米线外延生长Pd Zn纳米粒子催化体系.结果表明,当金属钯负载量较低(质量分数约为2%)时,经400℃还原后的催化剂表面会形成PdxZny(xy)合金,从而影响催化剂的CO选择性;提高钯负载量或还原温度有利于将PdxZny(xy)合金转化为Pd Zn合金,降低CO选择性.负载Pd Zn合金纳米粒子与氧化锌纳米线载体之间外延生长的界面关系使其在甲醇水蒸气重整反应中显示出优异的反应稳定性.  相似文献   

17.
采用电合成前驱体Ti(OEt)4直接水解法和电化学扫描电沉积法制备纳米TiO2-CNT-PtNi复合纳米催化剂.透射电镜(TEM)和X射线衍射(XRD)测试结果表明,纳米PtNi合金粒子(平均粒径8 nm)均匀地分散在纳米TiO2-CNT复合膜的三维网络结构中.通过暂态电化学方法研究表明,复合纳米催化剂的电化学活性比表面积为90 m2/g,对甲醇氧化具有很高的电催化活性和稳定性,常温常压下甲醇氧化峰电位为0.67和0.44 V,当温度为60℃时,氧化峰电位负移至0.64和0.30V,氧化峰电流密度高达1.38Mcm2.复合纳米催化剂对甲醇电氧化的高催化活性和稳定性可归因于多元复合纳米组分的协同催化作用,这种作用导致CO在复合纳米催化剂上的弱吸附,从而避免了催化剂的中毒.  相似文献   

18.
通过分步电沉积法制备碳布(CC)负载高致密Sn/SnBi合金催化剂:首先在CC上电沉积致密Sn颗粒,而后利用酸性电解液部分溶解Sn为Sn2+离子,实现在Sn颗粒表面共沉积SnBi合金枝晶,随后经过原位化学氧化及电化学还原步骤将SnBi合金枝晶转变为SnBi合金纳米颗粒(SnBi NPs)。得益于Sn提供形核位点,SnBi枝晶在碳织物表面垂直致密生长,并通过后续氧化还原转化实现了直径约20nm的SnBi合金颗粒在CC上致密均匀生长。CC/Sn/SnBiNPs三维电极在-1.08V(vsRHE)下显示出较高的电催化还原CO2活性,电流密度高达36mA·cm-2且甲酸盐产物选择性为94.9%。同时,在连续12h恒电压测试中性能未发生衰减,表明电极具有良好的稳定性。  相似文献   

19.
CO_2是一种储量丰富、廉价易得的碳资源,借助可再生能源的CO_2资源化利用是实现可持续发展战略的有效途径.近年来,单原子催化剂因其独特的结构特性被广泛应用,已成为连接多相与均相催化的桥梁.本文综述了单原子催化剂在CO_2催化还原转化中的应用,基于CO_2在多相纳米催化与均相催化体系中的反应特点,对单原子催化剂的设计及不同外场环境下活性中心电子结构的调控机制进行探讨,进而展望了单原子催化剂在CO_2资源化利用中的发展前景与挑战.  相似文献   

20.
近年来,工业化的高速推进和化石燃料的大量消耗,不仅造成严重的温室效应,而且加剧了能源危机和环境恶化等问题.电催化CO2还原技术可将温室气体CO2转化为具有经济价值的小分子化合物,且可以耦合间歇性可再生能源(如太阳能、风能、潮汐能等)产生的电力,目前已成为实现碳中和目标最有前景的技术途径之一.然而,由于CO2分子化学惰性较强,需要较高的过电位才能将其活化,导致其转化效率低.铋作为一种无毒无害、价格低廉且具有较高析氢过电位的非贵金属材料,可有效地促进CO2电还原为甲酸.但受质量活性、稳定性和产率的限制,铋基催化剂目前仍难以实现工业化应用.本文采用静电纺丝技术结合热处理方法制备了碳层封装的超小铋纳米颗粒,并用于二氧化碳电还原制甲酸.透射电镜等表征结果表明,铋纳米颗粒均匀地分散于碳纳米纤维中.电化学测试结果表明,在900℃下煅烧2 h制得的Bi/CNFs-900催化剂具有较好的电还原CO2为甲酸的性能.在较宽的电化学窗口内,甲酸的法拉第效率均在90%以上,在-1.20 V vs.RHE...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号