首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 67 毫秒
1.
和传统电解液相比,固态电解质热稳定性好,电位窗高,力学性能好且对环境友好;更重要地,由固态电解质组成的锂离子电池能量密度比传统锂离子电池更高,因而成为当前研究的热点。综述了几种主要固态电解质,包括无机固体电解质、固态聚合物电解质、凝胶电解质及复合型电解质的优势、研究进展以及面临的问题,并展望了未来固态电解质的发展趋势。  相似文献   

2.
开发下一代高安全且高能量密度能源体系是新能源产业进一步蓬勃发展的关键。将易燃易爆的液态电池替换为固态电池是一项极具前景的工作。在固态电解质中,聚合物电解质由于其高安全性、粘弹性及其良好的界面相容性等成为广泛研究的对象。但是在室温下其离子电导率仍然偏低,需要在高温下才能达到一定的电池性能。因此,在提升聚合物电解质常温离子电导率的同时,还需要进一步研究和改善电解质/电极之间的界面问题,降低界面阻抗。本文从固态聚合物的优缺点出发,介绍了不同固态聚合物电解质的性能及其离子传输机理,展望了固态聚合物电解质的最新研究进展和发展方向。  相似文献   

3.
全球环境问题推动了可充电锂电池技术的飞速发展.与液态电解液相比,固态电解质不易燃,构筑所得固态电池的安全性能得以提升.如果能够理解固态电解质中的离子输运行为,就能精准调控固态电池锂的动力学稳定性和倍率性能.随着计算机技术的快速发展,原子尺度模拟技术成为理解材料离子输运的重要手段.针对以上问题,本综合评述首先汇总了固体材料中的常见扩散机制;然后介绍了固态电解质中的锂离子输运机制,着重讨论了影响固态电解质锂离子输运的重要因素(晶体结构、电子结构、外部因素及晶界);最后对固态电解质锂离子输运机制研究进行了总结与展望.  相似文献   

4.
锂离子电池(lithiumionbatteries,LIBs)在储能领域已取得了巨大的成功.然而,商用LIBs含有高挥发性易燃有机电解液,使其存在严重的安全隐患.固态聚合物电解质具有解决相应安全性问题的潜力,有望成为下一代高安全性全固态LIBs的电解质材料.然而,固态聚合物电解质存在离子电导率不高等问题,限制了其在固态LIBs中的实际应用.研究者们为了提高该类电解质的离子电导率、锂离子迁移数等综合电化学性能,已在寻找新锂盐、对聚合物进行改性以及向聚合物电解质中添加填料等方面进行了较多的研究.本文简要概述了固态聚合物电解质的锂离子传导机理以及在提高固态聚合物电解质综合电化学性能方面的研究进展.  相似文献   

5.
全固态锂离子电池由于具有安全性高、能量密度高等优势,已成为未来锂离子电池发展的必经之路.作为全固态锂离子电池的核心部件,聚合物/无机复合固态电解质同时拥有无机固态电解质和固态聚合物电解质的许多优异性能,但其也面临着诸多挑战,包括室温离子电导率低于10-3S/cm和界面阻抗大等.本文综述了聚合物/无机复合固态电解质的聚合...  相似文献   

6.
全固态锂二次电池兼具高能量密度和高安全性特点.高陶瓷含量的陶瓷-聚合物复合固态电解质综合了聚合物电解质的柔韧性和陶瓷电解质的高机械强度与高锂离子迁移数等优点,有望优先其他形式固态电解质应用于全固态锂二次电池.本文在简要介绍固态复合电解质后,重点从复合电解质膜的性能特点与制备方法、陶瓷-聚合物界面相互作用以及由此导致的新...  相似文献   

7.
锂离子聚合物常温固体电解质的研究进展   总被引:7,自引:0,他引:7  
综述了锂离子电池聚合物常温固体电解质的最新研究进展。主要关注的是电化学性能,尤其是室温下的离子电导率。对性能较好的聚合物固体电解质体系进行了概述。  相似文献   

8.
固态锂电池因展现出高的安全性、高的能量密度和长循环寿命而成为备受期待的能量存贮装置。作为固态锂电池的重要组成部分,固态电解质的发展仍然制约着固态锂电池的商业化进程。目前,固态电解质仍然面临室温离子电导率较低,电解质与电极之间界面较差等问题。本文综述了近两年来性质较为优越的固态锂电池电解质的研究状况,包括固态聚合物电解质、无机氧化物电解质以及无机硫化物电解质。归纳了这些性能优良的固态电解质的主要特点,以此提出未来固态电解质可能的发展方向。  相似文献   

9.
液态锂离子电池由于采用易泄露、易挥发、易燃烧的碳酸酯有机溶剂,在高温或极端条件下使用时,存在极大的安全隐患.使用固态电解质替代液态电解液,可以从根本上避免此类安全问题的发生,与此同时还可以大幅度提升固态锂电池的能量密度.固态电解质又分为无机固态电解质和聚合物固态电解质2大类.无机固态电解质能够在宽的温度范围内保持化学稳定性,并且电化学窗口较宽,机械强度更高,室温离子电导率较高,但脆性较大,柔韧性差,制备工艺复杂,成本较高.聚合物固态电解质,室温离子电导率偏低,难以满足室温锂离子电池的应用,但其加工成型容易,形状可变.比较而言,固态聚合物电解质,更适宜大规模生产,离产业化相对更近.固态聚合物电解质中研究较多的是聚醚基固态聚合物电解质(如聚环氧乙烷和聚环氧丙烷),但其缺点是室温离子电导率低,需要对其改性或进一步开发综合性能更加优异的其他固态聚合物电解质.聚碳酸酯基固态聚合物电解质由于其特殊的分子结构(含有强极性碳酸酯基团)以及高介电常数,可以有效减弱阴阳离子间的相互作用,提高载流子数量,从而提高离子电导率,因此被认为是一类非常有前途的固态聚合物电解质体系.基于此,本文重点综述了最近研究热点的聚碳酸酯基固态聚合物电解质,包括聚(三亚甲基碳酸酯)体系、聚(碳酸丙烯酯)体系、聚(碳酸乙烯酯)体系和聚(碳酸亚乙烯酯)体系等,并详细阐述了上述每种聚碳酸酯基固态聚合物电解质的制备、电化学性能、优缺点及改性手段,归纳出其离子配位-解配位过程和离子扩散机制,还对聚碳酸酯基固态聚合物电解质的未来发展方向和研究趋势望进行了预测和展望.  相似文献   

10.
染料敏化太阳能电池(DSCs)具有成本低廉、制作工艺简单、光电转换效率较高等优点,在新一代薄膜太阳能电池中,被认为是最具市场潜力的新型太阳能电池之一.电解质在染料敏化太阳能电池中起到桥梁作用,担负着还原染料、输运载流子完成电池内部循环的作用.液态电解质虽然效率高,但是易挥发和泄露,对电池的稳定性和寿命有很大的影响.因此...  相似文献   

11.
锂离子电池液体电解质与电极相容性的研究进展   总被引:6,自引:0,他引:6  
随着锂离子电池商业化的不断发展,提高电池在室温及高温下的循环性和安全性已经引起了人们的高度重视.改善电解质与电极的相容性,提高电极表面钝化膜的稳定性是提高电池综合性能的有效途径.本文介绍了在优化电解质组成以及改善电解质与电极的相容性方面的研究进展,讨论了电解质各组分在电极上的作用机理.  相似文献   

12.
锂离子电池非水电解质锂盐的研究进展   总被引:4,自引:1,他引:4  
新型电解质锂盐主要包括含螯合硼阴离子、螯合磷阴离子、全氟膦阴离子、烷基磺酸阴离子、全氟烷基、亚胺基的有机锂盐及有机铝酸锂盐.本文综述了近年来在新型电解质锂盐研究与探索方面的成果,介绍了锂离子电池电解质锂盐的合成方法、组成与结构、化学和电化学性能及其与结构的关系,并阐述今后电解质锂盐研究的可能发展方向及研究方法.  相似文献   

13.
张昕岳  周园  邓小宇  杜秀月 《化学通报》2007,70(12):929-935
LiBF4基电解质的热稳定性较好,对环境水分不太敏感,有希望发展成为被民用、军事、三航领域微型、储能及动力锂离子电池广泛采用的优秀电解质体系。本文综述了近期在改善LiBF4的电导率、拓宽应用温度范围、促进SEI膜的形成、提高其电解液电导率及与电极材料的相容性等方面所取得的进展,并对其未来发展方向作了展望。  相似文献   

14.
侯廷政  陈翔  蒋璐  唐城 《电化学》2022,28(11):2219007
电解液及构筑电极电解液界面对于开发和应用高比容量储能系统至关重要。具体来说,电解液的机械(抗压性、粘度)、热(热导率和热容)、化学(溶解性、活度、反应性)、输运和电化学(界面及界面层)等性质,与其所组成的储能器件的性能直接相关。目前,大量的实验研究通过调控电解液的物理和/或化学组成来改善电解液性能,以满足新型电极材料的工作运行。与此同时,理论模拟方法近年来得到了迅速发展,使人们可以从原子尺度来理解电解液在控制离子输运和构筑功能化界面的作用。站在理论模拟研究的前沿上,人们可以利用其所揭示的机理性认识对新型电解液开展理性设计。本文首先总结了传统电解液的组成、溶剂化结构和输运性质以及电极电解液界面层的形成机理,进一步讨论了利用新型电解液设计稳定电极电解液界面层的方法,包括使用电解液添加剂、高浓电解液和固态电解质,并着重讨论了对这些新型电解液体系进行原子尺度模拟的最新进展,为了解和认识电解液提供更为基本的理解,并为未来电解液的设计提供系统的指导。最后,作者对新型电解液的理论筛选进行了展望。  相似文献   

15.
Ionic liquids (ILs)-incorporated solid-state polymer electrolytes (iono-SPEs) have high ionic conductivities but show non-uniform Li+ transport in different phases. This work greatly promotes Li+ transport in polymer phases by employing a poly (vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene) [P(VDF-TrFE-CTFE), PTC] as the framework of ILs to prepare iono-SPEs. Unlike PVDF, PTC with suitable polarity shows weaker adsorption energy on IL cations, reducing their possibility of occupying Li+-hopping sites. The significantly higher dielectric constant of PTC than PVDF facilitates the dissociation of Li-anions clusters. These two factors motivate Li+ transport along PTC chains, narrowing the difference in Li+ transport among varied phases. The LiFePO4/PTC iono-SPE/Li cells cycle steadily with capacity retention of 91.5 % after 1000 cycles at 1 C and 25 °C. This work paves a new way to induce uniform Li+ flux in iono-SPEs through polarity and dielectric design of polymer matrix.  相似文献   

16.
Rechargeable lithium-ion batteries (LIBs) dominate the energy market, from electronic devices to electric vehicles, but pursuing greater energy density remains challenging owing to the limited electrode capacity. Although increasing the cut-off voltage of LIBs (>4.4 V vs. Li/Li+) can enhance the energy density, the aggravated electrolyte decomposition always leads to a severe capacity fading and/or expiry of the battery. Herein, a new durable electrolyte is reported for high-voltage LIBs. The designed electrolyte is composed of mixed linear alkyl carbonate solvent with certain cyclic carbonate additives, in which use of the ethylene carbonate (EC) co-solvent was successfully avoided to suppress the electrolyte decomposition. As a result, an extremely high cycling stability, rate capability, and high-temperature storage performance were demonstrated in the case of a graphite|LiNi0.6Co0.2Mn0.2O2 (NCM622) battery at 4.45 V when this electrolyte was used. The good compatibility of the electrolyte with the graphite anode and the mitigated structural degradation of the NCM622 cathode are responsible for the high performance at high potentials above 4.4 V. This work presents a promising application of high-voltage electrolytes for pursuing high energy LIBs and provides a straightforward guide to study the electrodes/electrolyte interface for higher stability.  相似文献   

17.
地球上钠资源储量丰富、成本低廉,使得钠电池吸引了越来越多研究者的关注。传统的基于有机溶剂电解液体系的钠电池在安全方面存在不足。固态钠离子电池能够有效解决安全的问题,增加电池的安全性能。固态钠离子电池是一种很有前景的储能方式。钠离子固体电解质主要有Na-β-Al_2O_3、钠超离子导体(NASICON)、硫化物、聚合物以及硼氢化物这几类。无机固体电解质相对于聚合物固体电解质,离子电导率有优势。本文总结了三种常见的无机钠离子固体电解质:Na-β-Al_2O_3、NASICON、硫化物的研究进展,从离子电导率和界面稳定性等方面阐述了近年来的发展。  相似文献   

18.
Nafion- and sulfonated polysulfone (SPS)- based composite membranes were prepared by incorporation of SnO2 nanoparticles in a wide range of loading (0 35 wt. %). The composites were investigated by differential scanning calorimetry, dynamic vapor sorption and electrochemical impedance spectroscopy to study the filler effect on water sorption, water mobility, and proton conductivity. A detrimental effect of the filler was observed on water mobility and proton conductivity of Nafion-based membranes. An increase in water mobility and proton conductivity was instead observed in SPS-based samples, particularly at low hydration degree. Analysis of the water sorption isotherms and states of water revealed that the presence of SnO2 in SPS enhances interconnectivity of hydrophilic domains, while not affecting the Nafion microstructure. These results enable the design of suitable electrolyte materials that operate in proton exchange membrane fuel cell conditions.  相似文献   

19.
In the search for halogen-free electrolytes, the electronic structure of current electrolytes is studied via DFT-based first-principles calculations of the ground state geometries and total energies of anionic BF4-, PF6-, AsF6-, FePO4-, ClO4-, N(SO2F)2-, and N(SO2F3)2-.  相似文献   

20.
Rechargeable aqueous zinc-ion batteries (ZIBs) have garnered tremendous attention in the field of next energy storage devices due to their high safety, low cost, abundant resources, and eco-friendliness. As an important component of the zinc-ion battery, the electrolyte plays a vital role in the electrochemical properties, since it will provide a pathway for the migrations of the zinc ions between the cathode and anode, and determine the ionic conductivity, electrochemically stable potential window, and reaction mechanism. In this Minireview, a brief introduction of electrochemical principles of the aqueous ZIBs is discussed and the recent advances of various aqueous electrolytes for ZIBs, including liquid, gel, and multifunctional hydrogel electrolytes are also summarized. Furthermore, the remaining challenges and future directions of electrolytes in aqueous ZIBs are also discussed, which could provide clues for the following development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号