首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 271 毫秒
1.
The temperature dependence of the thermal emf of CaxAl1–x and AuxNi1–x for four different concentrations of the components of the alloys is calculated on the basis of the concept of dynamic concentrated excitations in amorphous metal systems. It is shown that increasing x from 0.15 to 0.50 in AuxNi1–x raises the thermal emf, and a further increase in the Au concentration from 0.50 to 0.80 lowers S(T). For CaxAl1–x the dependence S(T) is calculated in the interval of Ca concentrations from 0.55 to 0.75. In this concentration interval the thermal emf decreases as x is increased. It is shown that for both types of alloys the S(T) curve bends abruptly at a temperature near 10T0 (where T0 is the concentration-dependent characteristic temperature of amorphous alloys separating the ranges of strong and weak scattering of electrons by dynamic concentration excitations). The so-called S(T) knee shifts toward lower temperatures when the thermal emf increases with increasing x and toward higher temperatures when S(T) decreases with increasing x. The results agree with experimental data.Institute of Physics of Strength and Materials Science, Siberian Branch, Russian Academy of Sciences. State University, Tomsk. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 8, pp. 43–48, August, 1994.  相似文献   

2.
In the rare-earth SmCoO3 perovskite, Co3+ ions at low temperatures appear to be in the low-spin state with S = 0, t 2g 2 e g 0 . If Ca2+ ions partially substitute Sm3+ ions, oxygen deficient Sm1 ? x Ca x CoO3 ? δ solid solutions with δ = x/2 appear. The oxygen deficiency leads to the formation of pyramidally coordinated cobalt ions Co pyr 3+ in addition to the existing cobalt ions Co oct 3+ within the oxygen octahedra. Even at low temperatures, these ions have a magnetic state, either S = 1, t 2g 5 e g 1 or S = 2, t 2g 4 e g 2 . At low temperatures, the magnetization of Sm1 ? x Ca x CoO3 ? δ is mainly determined by the response of Co pyr 3+ ions. Owing to the characteristic features of the crystal structure of the oxygen deficient perovskite, these ions form a set of nearly isolated dimers. At high temperatures, the magnetization of Sm1 ? x Ca x CoO3 ? δ is mainly determined by the response of Co oct 3+ ions, which exhibit a tendency to undergo the transition from the S = 0, t 2g 6 e g 0 state to the S = 1, t 2g 5 e g 1 or S = 2, tt 2g 4 e g 2 state. In addition, the magnetization and specific heat of the solid solutions under study include the contribution from the rare-earth subsystem, which undergoes a magnetic ordering at low temperatures.  相似文献   

3.
The refractive index and the optical energy gap of Pb1–x Ge x Te (0x0.11) have been determined from transmission- and reflectivity measurements in the temperature range from 4.2 K to 300 K. At the ferroelectric phase transition a change of the temperature coefficient of both quantities is observed. A two bandk·p model calculation demonstrates a correlation of the optical energy gap with the high frequency dielectric constant. For higher values ofx (x=0.09) a splitting of absorption edge and birefringence have been observed.  相似文献   

4.
The Knight shift of Pd in Ag x Pd1–x has been determined for concentrationsx0.2. In full accordance with the expectations based on the behaviour of the magnetic susceptibility, it was found that the Knight shift of Pd is rapidly reduced in magnitude by adding Ag to Pd. To allow for a detailed interpretation of this finding, we have performed Korringa-Kohn-Rostoker coherent potential approximation (KKR-CPA) band structure calculations for Ag x Pd1–x . These calculations clearly demonstrate that the decrease in spin susceptibility with increasingx is accompanied with a decrease in core polarization. In contrast to Pd, the negative Knight shift of Ag on the Pd-rich side of the system is caused by the valence band contribution, as it is demonstrated by our calculations. This is caused by an intersite effect in analogy to the transferred hyperfine field found for non-magnetic elements dissolved in a magnetic host.  相似文献   

5.
The magnetic properties of Fe1 ? x Co x B and (Fe1 ? x Co x )2B disordered compounds were investigated using first-principles calculations of the electronic structure in the framework of the density functional theory with the Korringa-Kohn-Rostoker method. The concentration dependences of the magnetic moments and the electron density were calculated for the Fe1 ? x Co x B solid solutions. The results obtained were used to analyze in detail and to interpret the transition from a magnetic phase to a nonmagnetic phase, which was previously revealed from the experiments in the compounds under investigation. The performed analysis of the calculated hyperfine fields induced by the electronic shells at the iron and cobalt atoms in the (Fe1 ? x Co x )2B borides made it possible to explain the experimentally observed magnetic anisotropy.  相似文献   

6.
The penetration of hydrogen through protective layers of aluminum oxide fixed on the surface of nanocrystalline (NC) titanium is studied. A film 400 nm thick is prepared by the magnetron sputtering. Radiation- and thermally-induced gas release are employed. It is found that the Al x O1?x film prevents the release of hydrogen from a sample under both radiation and thermal effects. The temperature of hydrogen extraction from metal hydride accumulators can be reduced by 200–250°C, provided that heating is performed under conditions of surface irradiation by electrons with energies of ~30 keV and current densities of 2 to 3 μA cm?2.  相似文献   

7.
Quantum dots (3–4?nm) of Zn1? x Cd x S (both free of Mn2+ and with Mn2+ incorporated) were synthesized through a novel solvothermal-microwave irradiation technique. Detailed structural analysis of the Zn1? x Cd x S and Zn1? x Cd x S:Mn2+ (x?=?0, 0.25, 0.5, 0.75 and 1) materials was carried out using powder X-ray diffraction technique. For all the compositions, the crystallite size was controlled to less than 1.5?nm. The optical energy gap for Zn1? x Cd x S was found to vary from 3.878 to 2.519?eV and for Zn1?x Cd x S:Mn2+ it varies from 3.830 to 2.442?eV when x is increased from 0 to 1. Overall, the optical energy gap could be tuned from a minimum of 2.442?eV to a maximum of 3.878?eV. DC conductivity analysis (from 40°C to 150°C) and electrical energy gap analysis for all the compositions were also performed. The dc conductivity for Zn1? x Cd x S solid solutions varies from 0.3840?×?10?10 to 8.7782?×?10?10?mho/m at 150°C and for Zn1? x Cd x S:Mn2+ it varies from 0.5751?×?10?10 to 9.8078?×?10?10 mho /m at 150°C (for x?=?0 to x?=?1). The method of synthesis and the results observed in this investigation may assist in the fabrication of optical devices when the required operational performance falls under the range observed in the study.  相似文献   

8.
The structural and electronic properties of cubic GaN x As1−x with N-concentration varying between 0.0 and 1.0 with step of 0.25 were investigated using the full potential–linearized augmented plane wave (FP-LAPW) method. We have used the local density approximation (LDA) and the generalized gradient approximation (GGA) for the exchange and correlation potential. In addition the Engel-Vosko generalized gradient approximation (EVGGA) was used for the band-structure calculations. The structural properties of the binary and ternary alloys were investigated. The electronic band structure, total and partial density of states as well as the electron charge density were determined for both the binary and their related ternary alloys. The energy gap of the alloys decreases when we move from x=0.0 to 0.25; then it increases by a factor of about 1.8 when we move from 0.25 to 0.5, 0.75 and 1.0 using EVGGA. For both LDA and GGA moving from x=0.0 to 0.25 causes the band gap to close, showing the metallic nature of the GaN0.25As0.75 alloy. When the composition of N moves through x=0.25, 0.5, 0.75 and 1, the band gap increases.  相似文献   

9.
The static dielectric constant of Pb1–x Ge x Te (0x0.05) has been determined from differential capacitance measurements on Schottky-barriers in the temperature range of 4.2–300 K. A comparison with data deduced from the phonon frequencies via the Lyddane-Sachs-Teller relation shows substantial discrepancies which are attributed to lattice defects.Work supported by Jubiläumsfonds der Österreichischen Nationalbank  相似文献   

10.
Various negatron effects in films of alloys of II–VI compounds deposited from solutions as a function of the deposition mode and heat treatment are studied. It is found that the negative photocapacitance effect, which was first discovered in ZnS1?x Se x films, and the slowly relaxing negative photoelectric effects, which are caused by the transition of electrons located in a nanoscale surface layer from the shallow energy levels of trapping centers to deeper levels with a lower polarizability and by the presence of nanoscale clusters in these materials, which play the role of a “reservoir” for minority charge carriers, occur according to a single mechanism. A model to explain the basic laws of negative photoconductivity in CdSe1 ? x Te x films deposited from a solution is proposed. Negative residual conductivity is explained in terms of double-barrier relief model, while negative differential photoconductivity is attributed to the presence of nanoscale electric domains.  相似文献   

11.
Results are presented of studies of the dynamic magnetic susceptibility of CuO, Cu1?x Zn x O (x ≈ 1.5%), and Cu1?x Li x O (x ≈ 1%) single crystals. The orientational dependence of the ESR spectra was investigated at room temperature. The results for CuO are analyzed using a model of a quasi-one-dimensional antiferromagnet (S = 1/2) with anisotropic exchange interaction between Cu2+ spins in the chains and exchange coupling between the chains allowing for one-dimensional spin diffusion and spinon excitations. The estimated line width is of the same order of magnitude as the experimental data. Substituting Cu with Zn scarcely alters the spin dynamics of the Cu2+ ions, as in weakly diluted magnets. Lithium doping substantially increases the ESR line width and this is attributed to excess holes forming rapidly relaxing spin complexes with copper ions.  相似文献   

12.
Photovoltaicp-n junctions inn-type Pb1–xMn x Sx0.04, have been made by sulphur diffusion. Current-voltage and resistance-voltage characteristics have been examined at various temperatures. The spectral responses of the diodes have been measured within the temperature range from 5 to 300 K at a zero bias. From these measurements the energy band gap of Pb1–x Mn x S solid solution has been determined as a function of temperature and manganese content. A phenomenological expression describing the variation of the energy gap of Pb1–x Mn x S with temperature and alloy composition has been proposed.  相似文献   

13.
The crystal structure and the magnetic state of polycrystalline LaMn1?x VxO3 (0.1<x<0.9) compounds have been studied by x-ray and neutron diffraction methods, as well as by magnetization and ac susceptibility measurements. It is shown that substitution of vanadium for manganese ions leaves the orthorhombic crystal structure of the compounds (space group Pnma) unchanged. The magnetic structure is observed to change from a canted antiferromagnetic ordering (wavevector k=[0, 0, 0], with the antiferromagnetic moments aligned with the a axis and the ferromagnetic component of the magnetic moment parallel to the b axis) at vanadium concentrations x<0.4 to a collinear antiferromagnetic ordering (with the magnetic moments parallel to the b axis) at x>0.8; at this transition occurs through an intermediate state exhibiting spin-glass properties.  相似文献   

14.
The weak variation of the magnetic bulk susceptibility of Pd1–x Ag x with temperature T and silver mole fractionx within 0.5x1 has been investigated in the range 5KT400K. Experimental evidence can be given for an intersection point of the susceptibility isotherms (T=const,x) atx=0.55. The observed dependence of on T andx is interpreted by means of a semiphenomenological alloy susceptibility function (T,x).  相似文献   

15.
The giant negative thermal expansion (NTE) found in the anti-perovskite manganese nitride could be controlled by the content of the doped Ge and the vacancies of N. In this paper, the origin of such a tunable thermal expansion behavior is systematically studied. Our calculations indicate that the doped Ge atoms enhance the NTE property of the compound, and the existing N vacancies have a weak influence on the NTE property. Furthermore, the change of the exchange parameters between Mn ions with the content of the doped Ge as well as with the N vacancies in the compound is revealed, from which the relative stabilities of different magnetic phases in the concerned compounds can be explained.  相似文献   

16.
17.
Results from investigating the structural, magnetic, and electrical properties of Yb x Mn1 ? x S alloys (0 ≤ x ≤ 0.2) synthesized on the basis of manganese monosulfide are presented. Substituting manganese for ytterbium increases the concentration of charge carriers and lowers the activation energy. The observed anomalies in the temperature dependence of resistivity are explained by an impurity semiconductor model with donor 4f levels.  相似文献   

18.
The processes of the sputtering and modification of surfaces of polycrystalline films of the ternary solid solution Pb1 ? x Sn x S (x = 0.9–1.0) in a high-density Ar plasma of high-frequency low-pressure inductive discharge are studied. Films with thicknesses of 1–4 μm are grown on glass substrates using the “hot-wall” method and consist of plate-like crystallites. It is established that the sputtering rate for lead-tin sulfide films does not exceed 2.0 nm/s, which is determined by the presence of oxygen-containing compounds on the surfaces. In the case of plate-like crystallites with nanodimensional thicknesses, the effect of smoothing of the developed surfaces of the polycrystalline Pb1 ? x Sn x S layers during plasma treatment is observed; this is important for fabricating multilayer device structures.  相似文献   

19.
The development of photocathodes materials has become an important task for X-ray free electron laser and new generation of particle accelerator. The choice of the optimum cathode type and its further improvement is a fundamental issue for the progress in radio-frequency photoinjectors. Metallic photocathodes offer several advantages over the semiconductor ones, e.g. long lifetime and prompt response time on the photoemission. This paper reviews the requirements and the current status of metallic photocathodes prepared by pulsed laser ablation deposition technique. Magnesium, yttrium and lead are proposed as good alternative to copper photocathode which is generally used in radio-frequency photoinjectors. Parametric studies of the irradiation conditions are demanded to optimize the metallic thin film deposition. The main achievements on the morphology and structure characterization as well as photoemission testing of metallic photocathodes are presented and discussed.  相似文献   

20.
The effect of an invertedp-region along the free surface ofn-Al x Ga1−x Sb on the reverse current ofp−n structures from the given solid solution is analyzed. Expressions which describe “collection” of the inverted layer current on the cylindrical surface of ann-region are discussed. The contribution of the near-surface and bulk components to the reverse current ofp−n structures with a semi-infiniten-region is estimated. For structures with a two-layern-region of finite thickness we have calculated the dependence of the near-surface current on the voltage across thep−n structure, the thickness of then-region, and its composition and doping level. We have compared the calculated current-voltage characteristics with experiment using a Al0.15Ga0.85Sbp−n structure as an example. Tomsk State University, Tomsk. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, Vol. 42, No. 1, pp. 34–40, January, 1999.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号