首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Low molecular weight chitosans (5 kDa) hydrophobically modified with 3, 10, and 18 mol % of tetradecenoyl (TDC) groups have been synthesized. Their good solubility at neutral pH, their surface activity and micelle-forming properties as well as their ability to interact with negatively charged phospholipid vesicles mimicking the internal layer of cell plasma membranes, allow us to consider them as potential non-viral transfection vectors for gene therapy.  相似文献   

2.
The first 17 amino acid residues of Huntingtin protein (Nt17 of htt) are thought to play an important role in the protein's function; Nt17 is one of two membrane binding domains in htt. In this study the binding ability of Nt17 peptide with vesicles comprised of two subclasses of phospholipids is studied using electrospray ionization ‐ mass spectrometry (ESI‐MS) and molecular dynamics (MD) simulations. Overall, the peptide is shown to have a greater propensity to interact with vesicles of phosphatidylcholine (PC) rather than phosphatidylethanolamine (PE) lipids. Mass spectra show an increase in lipid‐bound peptide adducts where the ordering of the number of such specie is 1,2‐dioleoyl‐sn‐glycero‐3‐phosphocholine (DOPC) > 1‐palmitoyl‐2‐oleoyl‐glycero‐3‐phosphocholine (POPC) > 1‐palmitoyl‐2‐oleoyl‐sn‐glycero‐3 phosphoethanolamine (POPE). MD simulations suggest that the compactness of the bilayer plays a role in governing peptide interactions. The peptide shows greater disruption of the DOPC bilayer order at the surface and interacts with the hydrophobic tails of lipid molecules via hydrophobic residues. Conversely, the POPE vesicle remains ordered and lipids display transient interactions with the peptide through the formation of hydrogen bonds with hydrophilic residues. The POPC system displays intermediate behavior with regard to the degree of peptide‐membrane interaction. Finally, the simulations suggest a helix stabilizing effect resulting from the interactions between hydrophobic residues and the lipid tails of the DOPC bilayer.  相似文献   

3.
A family of amphiphilic cyclodextrins (6, 7) has been prepared through 6-S-alkylation (alkyl=n-dodecyl and n-hexadecyl) of the primary side and 2-O-PEGylation of the secondary side of alpha-, beta-, and gamma-cyclodextrins (PEG=poly(ethylene glycol)). These cyclodextrins form nonionic bilayer vesicles in aqueous solution. The bilayer vesicles were characterized by transmission electron microscopy, dynamic light scattering, dye encapsulation, and capillary electrophoresis. The molecular packing of the amphiphilic cyclodextrins was investigated by using small-angle X-ray diffraction of bilayers deposited on glass and pressure-area isotherms obtained from Langmuir monolayers on the air-water interface. The bilayer thickness is dependent on the chain length, whereas the average molecular surface area scales with the cyclodextrin ring size. The alkyl chains of the cyclodextrins in the bilayer are deeply interdigitated. Molecular recognition of a hydrophobic anion (adamantane carboxylate) by the cyclodextrin vesicles was investigated by using capillary electrophoresis, thereby exploiting the increase in electrophoretic mobility that occurs when the hydrophobic anions bind to the nonionic cyclodextrin vesicles. It was found that in spite of the presence of oligo(ethylene glycol) substituents, the beta-cyclodextrin vesicles retain their characteristic affinity for adamantane carboxylate (association constant K(a)=7.1 x 10(3) M(-1)), whereas gamma-cyclodextrin vesicles have less affinity (K(a)=3.2 x 10(3) M(-1)), and alpha-cyclodextrin or non-cyclodextrin, nonionic vesicles have very little affinity (K(a) approximately 100 M(-1)). Specific binding of the adamantane carboxylate to beta-cyclodextrin vesicles was also evident in competition experiments with beta-cyclodextrin in solution. Hence, the cyclodextrin vesicles can function as host bilayer membranes that recognize small guest molecules by specific noncovalent interaction.  相似文献   

4.
The binding of nevadensin to human serum albumin (HSA) in aqueous solution was investigated for the first time by molecular spectroscopy and modeling at pH 7.4. Spectrophotometric observations are rationalized in terms of a static quenching process and binding constant (KaKb) and the number of binding sites (n ≈ 1) were evaluated by fluorescence quenching methods. Thermodynamic data showed that nevadensin was included in the hydrophobic cavity of HSA mainly via hydrophobic interactions. The value of 3.09 nm for the distance r between the donor (HSA) and acceptor (nevadensin) was derived from the fluorescence resonance energy transfer. Spectrophotometric techniques were also applied to investigate the structural information of HSA molecules on the binding of nevadensin and the results showed that the binding of nevadensin to HSA did not change significantly molecular conformation of HSA in our experimental conditions. Furthermore, the study of molecular modeling also indicated that nevadensin could strongly bind to the site I (subdomain IIA) of HSA mainly by a hydrophobic interaction and there are hydrogen bond interactions between nevadensin and the residues Arg-218, Arg-222, Lys-195, and Asp-451. As compared to the other flavonoids, the flavonoids containing methoxy groups which are in aromatic rings can bind to HSA with higher affinity.  相似文献   

5.
The behavior of three copolymers of N-isopropylacrylamide (NIPAM), methacrylic acid (MAA), and hydrophobic moiety was studied at phospholipid monolayer/subphase interfaces. The hydrophobic moieties, N-terminal dioctadecylamine (DODA) and random octadecylacrylate (ODA), were used as anchoring groups. The interactions between a 1,2-distearoyl-sn-glycero-3-phosphatidylcholine (DSPC) monolayer and the copolymers were studied using the Langmuir balance technique. The effect of subphase pH, distribution of anchors along the copolymer chain, and copolymer molecular weight on the nature of the interactions between the copolymer chains and the DSPC monolayer were investigated. A first-order kinetics model was used to analyze the copolymers adsorption at the DSPC monolayer/subphase interface and allowed the interaction area between the copolymer chains and the DSPC monolayer, A(x), to be determined. The interaction area appears to depend on the subphase pH and the copolymer molecular weight. On decreasing pH, the interaction area of high molecular weight copolymers increases significantly; this is consistent with the copolymer chain phase transition from an extended coil to a collapsed globule while pH is lowered. In the latter conformation, strong hydrophobic attractive interactions between the copolymer chains and the hydrophobic part of the DSPC monolayer favor the copolymer intercalation, which could eventually provoke the phospholipidic layer destabilization or rupture.  相似文献   

6.
Complex formation of poly(N-isopropylacrylamide) (PNIPA) having a weight-average molecular weight of 1,720,000 g/mol with human serum albumin (HSA), ovalbumin (OVA) and lysozyme (LYZ) was studied in an aqueous medium containing 0.01 M NaCl and adjusted to pH 3. The polymer–protein mixtures at different molar ratios (rm) were examined by static light scattering (SLS). The analysis of SLS data using our own approach [Kokufuta et al., Langmuir 15 (1999) 940; Biomacromolecules 4 (2003) 728] showed that the molecular weight of each resulting complex is smaller than that of the interpolymer complex composed of two polymer chains plus one protein. This indicates the formation of an intrapolymer complex in all the polymer–protein systems studied. Thus, at each rm we calculated the number of bound proteins per polymer, the value of which was OVA > HSA > LYZ in order. These results were compared with the hydropathy profiles of each protein which are a good tool for obtaining an information about distribution of hydrophobic and hydrophilic segments in a protein. It has become apparent that the hydrophobic interaction between polymer and protein plays an important role in the intrapolymer complex formation.  相似文献   

7.
ζ-potential measurements on LUVs allow to evidence the influence of pH, ionic salt concentration, and polyelectrolyte charge on the interaction between polyelectrolyte (chitosan and hyaluronan) and zwitterionic lipid membrane. First, chitosan adsorption is studied: adsorption is independent on the chitosan molecular weight and corresponds to a maximum degree of decoration of 40% in surface coverage. From the dependence with pH and independence with MW, it is concluded that electrostatic interactions are responsible of chitosan adsorption which occurs flat on the external surface of the liposomes. The vesicles become positively charged in the presence of around two repeat units of chitosan added per lipid accessible polar head in acid medium down to pH = 7.2. Direct optical microscopy observations of GUVs shows a stabilization of the composite liposomes under different external stresses (pH and salt shocks) which confirms the strong electrostatic interaction between the chitosan and the lipid membrane. It is also demonstrated that the liposomes are stabilized by chitosan adsorption in a very wide range of pH (2.0 < pH < 12.0). Then, hyaluronan (HA), a negatively charged polyelectrolyte, is added to vesicles; the vesicles turn rapidly negatively charged in presence of adsorbed HA Finally, we demonstrated that hyaluronan adsorbs on positively charged chitosan-decorated liposomes at pH < 7.0 leading to charge inversion in the liposome decorated by the chitosan-hyaluronan bilayer. Our results demonstrate the adsorption of positive and/or negative polyelectrolyte at the surface of lipidic vesicles as well as their role on vesicle stabilization and charge control.  相似文献   

8.
Increase of lipophilicity of cationic doxorubicin (DOX) by its association with a fatty acid ion is of interest for pharmaceutical formulations and could have an impact on the drug delivery into cancer cells. On the basis of spectroscopic analysis of intrinsic DOX fluorescence, this study provides an experimental evidence of DOX-oleate interactions as function of ion/drug molar ratio (R) and pH. An electrostatic attraction to oleates is dominant for the cationic form of DOX (pH 6.5) and a hydrophobic interaction is characteristic of the molecular form of DOX (pH 8.6). A high content of sodium oleate vesicles ([oleate]>/=0.2 mM, R>/=20) limits the electrostatic and hydrophobic interactions at pH 6.5 while favoring the hydrophobic interactions at pH 8.6. The influence of these interactions on the lipophilicity of the cationic form of DOX is analyzed by measuring the apparent partition coefficient (aqueous buffer pH 6.5/methylene chloride). The results show a lipophilicity gain for the cationic form of DOX in presence of 10 : 1 ion/drug molar ratio, while no lipophilicity increase is observed at 50 : 1 molar ratio.  相似文献   

9.
The interaction between bovine serum albumin (BSA) and the anionic 1.2-dipalmitoyl-snglycero- 3-(phospho-rac-(1-glycerol)) (sodium salt) (DPPG) phospholipid at different subphase pH values was investigated at air-water interface through surface pressure measurements and atomic force microscopy (AFM) observation. By analyzing surface pressure-mean molecular area (π-A) isotherms, the limiting molecular area in the closed packing state-the concentration of BSA (Alim-[BSA]) curves, the compressibility coefficient-surface pressure (CS-1-π) curves and the difference value of mean molecular area-the concentration of BSA (ΔA-[BSA]) curves, we obtained that the mean molecular area of DPPG monolayer became much larger when the concentration of BSA in the subphase increased at pH=3 and 5. But the isotherms had no significant change at different amount of BSA at pH=10. In addition, the amount of BSA molecules adsorbed onto the lipid monolayer reached a threshold value when [BSA]>5×10-8 mol/L for all pHs. From the surface pressure-time (π-t) data, we obtained that desorption and adsorption processes occurred at pH=3, however, there was only desorption process occurring at pH=5 and 10. These results showed that the interaction mechanism between DPPG and BSA molecules was affected by the pH of subphase. BSA molecules were adsorbed onto the DPPG monolayers mainly through the hydrophobic interaction at pH=3 and 5, and the strength of hydrophobic interaction at pH=3 was stronger than the case of pH=5. At pH=10, a weaker hydrophobic interaction and a stronger electrostatic repulsion existed between DPPG and BSA molecules. AFM images revealed that the pH of subphase and [BSA] could affect the morphology features of the monolayers, which was consistent with these curves. The study provides an important experimental basis and theoretical support to understand the interaction between lipid and BSA at the air-water interface.  相似文献   

10.
从TGEV3CL蛋白酶二聚体结构出发,研究了TGEV3CL蛋白酶二聚体单体之间的静电和疏水相互作用.蛋白质的静电相互作用通过有限差分方法求解Poisson-Boltzmann方程得到,疏水相互作用通过分析溶剂可及性表面模型得到.考察了不同pH值对SARS3CL蛋白酶二聚体静电和疏水相互作用的影响,在pH=5.5~8.5时,二聚体静电相互作用能、静电去溶剂化能和疏水自由能都具有较小的数值,表明在该条件下静电和疏水相互作用有利于二聚体的稳定存在.由于SARS3CL蛋白酶活性模式为二聚体,因此,在该pH值范围内,有利于蛋白酶保持活性.在pH=7.0条件下,蛋白酶单体之间具有最强的静电和疏水相互作用,从而使蛋白酶具有最强的活性,这与实验结果相一致.pH值对静电去溶剂化能的影响大于疏水自由能,表明静电作用是造成强酸或强碱条件下二聚体不能稳定存在的主要原因.  相似文献   

11.
The gelation of two spontaneously formed charged catanionic vesicles by four water soluble polymers was systematically studied by tube inversion method and rheology. Eight phase maps were successfully documented for the catanionic vesicle–polymer mixtures. The experimental results, as represented by the relaxation time and the storage modulus at 1 Hz, revealed that the catanionic vesicle–polymer interactions at play were of electrostatic and hydrophobic origin. Firstly, no association between charged catanionic vesicles and the polymer without charge/hydrophobic modification was observed due to lack of both electrostatic and hydrophobic effects. Secondly, hydrophobic interactions accounted for the association between the hydrophobically modified polymer without charge and charged catanionic vesicles with hydrophobic grafts of the polymer inserting in the catanionic vesicle bilayer. Thirdly, the positively charged polymer without hydrophobic modification could interact with negatively charged catanionic vesicles through electrostatic force on one hand but could not interact with positively charged catanionic vesicles on the other hand. Finally, the positively charged polymer with hydrophobic modification could interact both electrostatically and hydrophobically with negatively charged catanionic vesicles, resulting in the formation of strong gels. The hydrophobic interaction might even overcome the unfavorable electrostatic interaction between the positively charged vesicles and the polymer with positive charge/hydrophobic modification.  相似文献   

12.
Polyanion‐coated lipid vesicles are proposed to have an appreciable potential for drug delivery because of their ability to control the permeability of lipid bilayers by environmental parameters such as pH and temperature. However, details of the interaction of this class of polymers with lipids and their mechanisms of induced permeability are still being debated. In this work, we applied 1H NOESY to study details of the interaction of polyacrylic acid (PAA) fractions of molecular weights 5 and 240 kDa with dimyristoylphosphatidylcholine vesicles. We showed that PAA of two different molecular masses modifies lipid bilayers increasing disorder and probability of close contact between polar and hydrophobic groups. PAA molecules adsorb near the interface of lipid bilayers but do not penetrate into the hydrophobic core of the bilayer and, thus, cannot participate in formation of transbilayer channels, proposed in earlier works. Increasing the molecular mass of PAA from 5 kDa to 240 kDa does not change the effect of PAA on the bilayer, although PAA240 forms a more compact structure (either intra‐molecular or inter‐molecular) and interacts more strongly with interface lipid protons. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
从TGEV 3CL蛋白酶二聚体结构出发,研究了TGEV 3CL蛋白酶二聚体单体之间的静电和疏水相互作用.蛋白质的静电相互作用通过有限差分方法求解Poisson-Boltzmann方程得到,疏水相互作用通过分析溶剂可及性表面模型得到.考察了不同pH值对TGEV 3CL蛋白酶二聚体静电和疏水相互作用的影响,在pH值为5.5~8.5时,二聚体静电相互作用能、静电去溶剂化能和疏水自由能都较小,表明在该条件下静电和疏水相互作用有利于二聚体的稳定存在,这符合实验结晶所需条件.pH值对静电去溶剂化能的影响大于疏水自由能,表明静电作用是造成强酸或强碱条件下二聚体不能稳定存在的主要原因.  相似文献   

14.
Thermodynamics of the interaction between sodium dodecyl sulfate (SDS) with lysozyme were investigated at pH 7.0 and 27 °C in phosphate buffer by isothermal titration calorimetry. A new method to follow protein denaturation, and the effect of surfactants on the stability of proteins was introduced. The new solvation model was used to reproduce the enthalpies of lysozyme–SDS interaction over the whole range of SDS concentrations. The solvation parameters recovered from the new equation, attributed to the structural change of lysozyme and its biological activity. At low concentrations of SDS, the binding is mainly electrostatic, with some simultaneous interaction of the hydrophobic tail with nearby hydrophobic patches on the lysozyme. These initial interactions presumably cause some protein unfolding and expose additional hydrophobic sites. The enthalpy of denaturation is 160.81 ± 0.02 kJ mol−1 for SDS.  相似文献   

15.
To investigate the implications of the unique properties of fullerenes on their interaction with and passive transport into lipid membranes, atomistic molecular dynamics simulations of a C60 fullerene in a fully hydrated di-myristoyl-phoshatidylcholine lipid membrane have been carried out. In these simulations the free energy and the diffusivity of the fullerene were obtained as a function of its position within the membrane. These properties were utilized to calculate the permeability of fullerenes through the lipid membrane. Simulations reveal that the free energy decreases as the fullerene passes from the aqueous phase, through the head group layer and into the hydrophobic core of the membrane. This decrease in free energy is not due to hydrophobic interactions but rather to stronger van der Waals (dispersion) interactions between the fullerene and the membrane compared to those between the fullerene and (bulk) water. It was found that there is no free energy barrier for transport of a fullerene from the aqueous phase into the lipid core of the membrane. In combination with strong partitioning of the fullerenes into the lipidic core of the membrane, this "barrierless" penetration results in an astonishingly large permeability of fullerenes through the lipid membrane, greater than observed for any other known penetrant. When the strength of the dispersion interactions between the fullerene and its surroundings is reduced in the simulations, thereby emulating a nanometer sized hydrophobic particle, a large free energy barrier for penetration of the head group layer emerges, indicating that the large permeability of fullerenes through lipid membranes is a result of their unique interaction with their surrounding medium.  相似文献   

16.
The effects of nonionic surfactants having different hydrophilicity and membranes having different hydrophobicity and molecular weight cut-off on the performance of micellar-enhanced ultrafiltration (MEUF) process were examined. A homologous series of polyethyleneglycol (PEG) alkylether having different numbers of methylene groups and ethylene oxide groups was used for nonionic surfactants. Polysulfone membranes and cellulose acetate membranes having different molecular cut-off were used for hydrophobic membranes and hydrophilic membranes, respectively. The concentration of surfactant added to pure water was fixed at the value of 100 times of critical micelle concentration (CMC). The flux through polysulfone membranes decreased remarkably due to adsorption mainly caused by hydrophobic interactions between surfactant and membrane material. The decline of solution flux for cellulose acetate membranes was not as serious as that for polysulfone membranes because of hydrophilic properties of cellulose acetate membranes. The surfactant rejections for the cellulose acetate membranes increased with decreasing membrane pore size and with increasing the hydrophobicity of surfactant. On the other hand the surfactant rejections for polysulfone membranes showed totally different rejection trends with those for cellulose acetate membranes. The surfactant rejections for the polysulfone membranes depend on the strength of hydrophobic interactions between surfactant and membrane material and molecular weight of surfactants.  相似文献   

17.
Molecular interactions between an anticancer drug, paclitaxel, and phosphatidylcholine (PC) of various chain lengths were investigated in the present work by the Langmuir film balance technique and differential scanning calorimetry (DSC). Both the lipid monolayer at the air-water interface and lipid bilayer vesicles (liposomes) were employed as model biological cell membranes. Measurement and analysis of the surface pressure versus molecular area curves of the mixed monolayers of phospholipids and paclitaxel under various molar ratio showed that phospholipids and paclitaxel formed a nonideal miscible system at the interface. Paclitaxel exerted an area-condensing effect on the lipid monolayer at small molecular surface areas and an area-expanding effect at large molecular areas, which could be explained by the intermolecular forces and geometric accommodation between the two components. Paclitaxel and phospholipids could form thermodynamically stable monolayer systems: the stability increased with the chain length in the order DMPC (C14:0)>DPPC (C16:0)>DSPC (C18:0). Investigation of paclitaxel penetration into the pure lipid monolayer showed that DMPC had a higher ability to incorporate paclitaxel and the critical surface pressure for paclitaxel penetration also increased with the chain length in the order DMPC>DPPC>DSPC. A similar trend was testified by DSC studies on vesicles of the mixed paclitaxel/phospholipids bilayer. Paclitaxel showed the greatest interaction with DMPC while little interaction could be measured in the paclitaxel/DSPC liposomes. Paclitaxel caused broadening of the main phase transition without significant change at the peak melting temperature of the phospholipid bilayers, which demonstrated that paclitaxel was localized in the outer hydrophobic cooperative zone of the bilayer. The interaction between paclitaxel and phospholipid was nonspecific and the dominant factor in this interaction was the van der Waals force or hydrophobic force. As the result of the lower net van der Waals interaction between hydrocarbon chains for the shorter acyl chains, paclitaxel interacted more readily with phospholipids of shorter chain length, which also increased the bilayer intermolecular spacing.  相似文献   

18.
Lipid membranes are well recognized ligands that bind peripheral and integral proteins in a specific manner and regulate their function. Cytochrome c (cyt c) is one of the partner peripheral protein that binds to the lipid membranes via electrostatic and hydrophobic interactions. In this study, asymmetrical flow field-flow fractionation (AsFlFFF) was used to compare the interactions of cyt c with the acidic phospholipid 1,2-dimyristoyl-sn-glycero-3-phospho-rac-glycerol (DMPG), oleic acid (OA), and sodium dodecyl sulfate (SDS). The influence of pH and the cyt c–lipid molar mass ratios were evaluated by monitoring the diffusion coefficients and particle diameter distributions obtained for the free and lipid-bound protein. The hydrodynamic particle diameter of cyt c (pI 10) was 4.1 nm at pH 11.4 and around 4.2 nm at pH 7.0 and 8.0. Standard molar mass marker proteins were used for calibration to obtain the molar masses of free cyt c and its complexes with lipids. AsFlFFF revealed the binding of cyt c to DMPG and to OA to be mainly electrostatic. In the absence of electrostatic interactions, minor complex formation occurred, possibly due to the extended lipid anchorage involving the hydrophobic cavity of cyt c and the hydrocarbon chains of DMPG or SDS. The possibility of the formation of the molten globule state of cyt c, induced by the interaction between cyt c and lipids, is discussed.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

19.
Transfection of cells by DNA (for the purposes of gene therapy) can be effectively engineered through the use of cationic lipid/DNA "lipoplexes", although the transfection efficiency of these lipoplexes is sensitive to the neutral "helper" lipid included. Here, neutron reflectivity has been used to investigate the role of the helper lipid present during the interaction of cationic lipid vesicles with model cell membranes. Dimethyldioctadecylammonium bromide (DDAB) vesicles were formed with two different helper lipids, 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE) and cholesterol, and the interaction of these vesicles with a supported phospholipid bilayer was determined. DOPE-containing vesicles were found to interact faster with the membrane than those containing cholesterol, and vesicles containing either of the neutral helper lipids were found to interact faster than when DDAB alone was present. The interaction between the vesicles and the membrane was characterized by an exchange of lipid between the membrane and the lipid aggregates in solution; the deposition of vesicle bilayers on the surface of the membrane was not apparent.  相似文献   

20.
Ultrafiltration experiments for the chiral separation of racemic phenylalanine were performed with DNA-immobilized chitosan membranes having various pore sizes. Atomic analysis on the membranes showed that the chitosan membranes covalently bound six times more DNA than the cellulose membranes used in our previous study [A. Higuchi, Y. Higuchi, K. Furuta, B.O. Yoon, M. Hara, S. Maniwa, M. Saitoh, K. Sanui, Chiral separation of phenylalanine by ultrafiltration through immobilized DNA membranes, J. Membr. Sci. 221 (2003) 207–218]. d-Phenylalanine preferentially permeated through DNA-immobilized chitosan membranes with a pore size <6.4 nm [molecular weight cut-off (MWCO) <67,000]. The binding affinity of a specific enantiomer due to the pore size of the DNA-immobilized membranes regulated the preferential permeation of the enantiomer through the membranes. l-Phenylalanine was adsorbed on the DNA-immobilized chitosan membranes with a pore size <6.4 nm (MWCO < 67,000), while there was little difference between the adsorption of d-phenylalanine and l-phenylalanine on the membranes with a pore size >6.4 nm (MWCO > 67,000). The DNA-immobilized chitosan membranes were categorized as channel type membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号