首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
We present the orientational relaxation times in protic and aprotic solvents for rose bengal in its lowest excited singlet state. The method uses a mode locked dye laser for polarized excitation, and time correlated single photon counting for determination of the time resolved polarized fluorescence. The observed orientational decay for the dipolar aprotic solvents and the alcohols are in agreement with the values predicted by the Stokes-Einstein diffusion equation. In the latter solvents, volume and shape corrections must be made for attachment of the alcohol to the two anion sites of the dye molecule. The solvent N-methylformamide, however, shows rose bengal reorienting much faster than the alcohols. Our interpretation of this data suggests that agreement with the Stokes-Einstein equation (stick boundary conditions) is coincidental. We propose a solvent torque model in which the solvent interaction at each anion site of rose bengal controls the deviations from an expected slip boundary condition. This qualitative model is used to correlate our data as well as relevant data in the literature. The values in picoseconds for the observed orientational relaxation times are given in parenthesis; acetone (70), DMF (160), DMSO (420), MeOH (190), EtOH (450), isopropanol (840), NMF (500).  相似文献   

2.
The primary pathways of the photodecomposition of 9-fluorenol (FOH) were studied in polar and nonpolar solvents by use of laser flash-photolysis with a resolution time of 10 ps. In solvents of high polarity, that is, in 1,1.1,3,3,3-hexafluoroisopropanol (HFIP), 2,2,2-trifluoroethanol (TFE), formamide or water, the fluorenyl cation, F+, forms by heterolytic C-O bond cleavage. In H2O, the initial (10 ps) spectrum of F+ has lambdamax at <460 nm. This absorption red-shifts with T = 25 ps to the "classical" spectrum with lambdamax = 510-515 nm. This process is assigned to the solvation of the initial "naked" cation, or rather, the contact ion pair. The lifetime of the solvated fluorenyl cation in H2O (or D2O) and TFE was measured to be tau 20 ps and 1 ns, respectively. In solvents of lower polarity such as alkanes, ethers and alcohols, the long-lived (tau 1/2 1 micros) fluorenyl radical, F., (lambdamax = 500 nm) forms through homolytic C-O cleavage. In addition to the radical and the cation, the vibrationally relaxed excited singlet state of FOH is seen with its absorption at approximately 640 nm; its lifetime is strongly dependent on the solvent, from 10 ps for formamide to 1.7 ns for cyclohexane. The rate constant for singlet decay increases exponentially with the polarity of the solvent (as expressed by the Dimroth-Reichardt ET value) or with the Gutmann solvent acceptor number. The relaxation of S1 to S0 is accompanied by homolytic C9-O bond cleavage (except in HFIP, TFE, and water, where S1 is not seen).  相似文献   

3.
Femtosecond transient absorption spectroscopy was used to study singlet diphenylcarbene generated by photodissociation of diphenyldiazomethane with a UV pulse at 266 nm. Absorption by singlet diphenylcarbene was detected and characterized for the first time. Similar band shapes were observed in acetonitrile and in cyclohexane with lambda(max) approximately 370 nm. The singlet absorption decays by intersystem crossing to triplet diphenylcarbene at rates that agree with previous measurements. The singlet absorption band is completely formed 1 ps after the pump pulse. It is preceded by a strong and broad absorption band, which is tentatively assigned to excited-state absorption by a singlet diazo excited state. In neat alcohol solvents the growth and decay of the diphenylmethyl cation was observed. This species is formed by proton transfer from an alcohol molecule to singlet diphenylcarbene. Since a shell of solvent molecules surrounds each nascent carbene, the intrinsic rate of protonation in the absence of diffusion could be measured. In methanol, proton transfer occurs with a time constant of 9.0 ps, making this the fastest known intermolecular proton-transfer reaction to carbon. In O-deuterated methanol proton transfer occurs in 15.0 ps. Slower rates were observed in the longer alcohols. The protonation times correlate reasonably well with solvation times in these alcohols, suggesting that solvent fluctuations are the rate-limiting step. In all alcohols studied, the carbocations decay on a somewhat slower time scale to yield diphenylalkyl ethers. In methanol and ethanol the rate of decay is determined by reaction with neutral solvent nucleophiles. There is evidence in 2-propanol that geminate reaction within the initial ion pair is faster than reaction with solvent. No isotope effect was observed for the reaction of the diphenylmethyl carbocation in methanol. Using comparative actinometry the quantum yield of protonation was measured. In methanol, the quantum yield of carbocations reaches a maximum value of 0.18 approximately 18 ps after the pump pulse. According to our analysis, 30% of the photoexcited diazo precursor molecules are eventually protonated. Somewhat lower protonation efficiencies are observed in the other alcohols. Because the primary quantum yield for formation of singlet diphenylcarbene is still unknown, the importance of reaction channels that might exist in addition to protonation cannot be determined at present. Singlet carbenes are powerful, photogenerated bases that open new possibilities for fundamental studies of proton transfer in solution.  相似文献   

4.
In this work, we present the behavior of solid monolayers of binary mixtures of alkanes and alcohols adsorbed on the surface of graphite from their liquid mixtures. We demonstrate that solid monolayers form for all the combinations investigated here. Differential scanning calorimetry (DSC) is used to identify the surface phase behavior of these mixtures, and elastic neutron incoherent scattering has been used to determine the composition of the mixed monolayers inferred by the calorimetry. The mixing behavior of the alcohol/alkane monolayer mixtures is compared quantitatively with alkane/alkane and alcohol/alcohol mixtures using a regular solution approach to model the incomplete mixing in the solid monolayer with preferential adsorption determining the surface composition. This analysis indicates the preferential adsorption of alcohols over alkanes of comparable alkyl chain length and even preferential adsorption of shorter alcohols over longer alkanes, which contrasts strongly with mixtures of alkane/alkane and alcohol/alcohol of different alkyl chain lengths where the longer homologue is always found to preferentially adsorb over the shorter. The alcohol/alkane mixtures are all found to phase separate to a significant extent in the adsorbed layer mixtures even when molecules are of a similar size. Again, this contrasts strongly with alkane/alkane and alcohol/alcohol mixtures where, although phase separation is found for molecules of significantly different size, good mixing is found for similar size species.  相似文献   

5.
6.
Molecular rotation reorientation times are investigated using time resolved fluorescence depolarization studies of three solutes of similar size and shape (nile red, neutral nile blue and cationic nile blue) dissolved in alcohol and alkane solvents as well as an extensive compilation of previous results for neautral and charged solutes dissolved in non-polar, polar and associated solvents. A universal correlation is foung between reorientation time, solvent viscosity, and solute volume for solutes dissolved in alkanes, while strongly interacting solutes experience relatively enhanced friction, and non-polar solutes dissolved in alcohols experience reduced friction. The results are compared and contrasted with slip and stick hydrodynamic predictions, and used to develop empirical correlations, which can be used to predict molecular reorientation times with an uncetainty on the order of a factor of two in virtually any solute-solvent system.  相似文献   

7.
Vibrational energy relaxation of degenerate CO stretches of four tungsten carbonyl complexes, W(CO)6, W(CO)5(CS), W(CO)5(CH3CN), and W(CO)5(CD3CN), is observed in nine alkane solutions by subpicosecond time-resolved infrared (IR) pump-probe spectroscopy. Between 0 and 10 ps after the vibrational excitation, the bleaching signal of the ground-state IR absorption band shows anisotropy. Decay of the anisotropic component corresponds either to the rotational diffusion of the molecule or to the intramolecular vibrational energy transfer among the degenerate CO stretch modes. The time constant of the anisotropy decay, tauaniso, shows distinct solvent dependence. By comparing the results for the T1u CO stretch of W(CO)6 and the A1 CO stretch of W(CO)5(CS), the time constant of the rotational diffusion, taur, and the time constant of the intramolecular energy transfer among the three degenerate vibrational modes, taue, are determined as 12 and 8 ps, respectively. The tauaniso value increases as the number of carbon atoms in the alkane solvent increases. After 10 ps, the recovery of the bleaching becomes isotropic. The isotropic decay represents the vibrational population relaxation, from v=1 to v=0. In heptane, the time constant for the isotropic decay, tau1, for W(CO)5(CS) and W(CO)6 was 140 ps. The tau1 for the two acetonitrile-substituted complexes, however, shows a smaller value of 80 ps. The vibrational energy relaxation of W(CO)5(CH3CN) and W(CO)5(CD3CN) is accelerated by the intramolecular energy redistribution from the CO ligand to the acetonitrile ligand. In the nine alkane solutions, the tau1 value of W(CO)6 ranges between 124 and 158 ps, showing the apparent V-shaped solvent dependence with its minimum in decane, while the tau1 value shows little solvent dependence for W(CO)5(CH3CN) and W(CO)5(CD3CN).  相似文献   

8.
用气液色谱法测量了在不同温度下C_1~C_4醇类的各种异构物在C_(16)~C_(23)正构烷烃、角鲨烷,和角鲨烯中的无限稀活度系数γ_i,偏摩尔过量焓、偏摩尔过量熵。在各种溶剂中γ_i、均大于1,在同一溶剂中γ_i依下列次序减小: 甲醇>乙醇>正丙醇>正丁醇; 正丙醇>异丙醇; 正丙醇>异丁醇>仲丁醇>叔丁醇同一种醇在角鲨烯中的γ_i较在角鲨烷中为低。异构醇类的低于正构醇类。所测的有随的增加而增加的趋势。  相似文献   

9.
TS-1催化丙烯环氧化过程中环氧丙烷的开环反应研究   总被引:3,自引:1,他引:3  
环氧丙烷的开环反应是TS-1催化丙烯环氧化制备环氧丙烷过程的副反应,本文对醇溶剂中开环反应进行了研究,分析了该反应的酸性催化机理,酸性主要来自TS-1与H2O2的相互作用产生的质子酸,醇溶剂能显著增强体系酸性从而加快环氧丙烷的开环反应速度。三种醇按酸性增强程度的顺序为甲醇>异丙醇>仲丁醇。根据反应的Eley-Rideal 机理(吸附态的PO与游离态的醇发生开环反应,表面反应为控制步骤)再考虑各组分在TS-1上的吸附特点提出反应的机理模型。用实验数据进行了回归,得到了令人满意的动力学方程式,实验数据与模型计算值平均偏差小于10%。  相似文献   

10.
Ultrafast infrared spectroscopy has been used to measure vibrational energy relaxation (VER) and reorientation (Tr) times for the high frequency vibrational bands of potassium ferrocyanide and ferricyanide (CN stretches), and sodium nitroprusside (SNP, CN, and NO stretches) in water and several other solvents. Relatively short VER times (4-43 ps) are determined for the hexacyano species and for the NO band of SNP, but the CN band of SNP relaxes much more slowly (55-365 ps). The solvent dependence of the VER times is similar for all the solutes and resembles what has been previously observed for triatomic molecular ions [Li et al., J. Chem. Phys. 98, 5499 (1993)]. Anisotropy decay times are also measured from the polarization dependence of the transient absorptions. The Tr times determined for SNP are different for the different vibrational bands; for the nondegenerate NO mode of nitroprusside (SNP) they are much longer (>15 ps), correlate with solvent viscosity, and are attributed to overall molecular rotation. The short Tr (<10 ps) times for the CN band in SNP and for the hexacyanoferrates are due to dipole orientational relaxation in which the transition moment rapidly redistributes among the degenerate modes. There is no evidence of intramolecular vibrational relaxation (IVR) to other high frequency modes. VER times measured for hexacarbonyls and SNP in methanol are similar, which suggests that the generally faster VER for the latter is in part because they are soluble in more strongly interacting polar solvents. The results are compared to those for small ions and metal carbonyls and are discussed in terms of the importance of solute charge and symmetry on VER.  相似文献   

11.
The phosphorescence of phenazine (PZ) and quinoxaline (QX) was investigated after pulsed laser excitation in the glass-transition range of several alkane solvents. Three relaxation processes of PZ and QX in the metastable triplet state, T1, were studied as a function of temperature: (1) the decay of the selective population of the strongly phosphorescent triplet substate T1x due to spin-lattice relaxation (SLR), (2) the time-dependent red shift of the phosphorescence spectrum due to the solvation of triplet-state molecules, and (3) the decay of the phosphorescence polarization due to orientational relaxation (OR). Various aspects and connections of the mechanisms governing the three relaxation phenomena are discussed. The relaxation dynamics were characterized at temperatures above the glass-transition temperature of the respective solvent, where the fundamental processes involved are strongly dependent upon the solvent viscosities. For the systems treated here, OR and solvation were satisfactorily described by a Vogel-Fulcher-Tammann temperature behavior. SLR also depends on properties of the alkane solvent above the glass transition. Upon cooling, SLR becomes independent of the specific solvent properties and is based on mechanisms that are typical for amorphous glasses or solids. (This particular aspect will be the subject of a subsequent publication, part 2).  相似文献   

12.
The efficiency of the photochemical ring-opening of chromenes (or benzopyrans) depends on the vibronic transition selected by the chosen excitation wavelength. In the present work, ab initio CASPT2//CASSCF calculations are used to determine the excited-state ring-opening reaction coordinate for 2H-chromene (C) and 2,2-diethyl-2H-chromene (DEC) and provide an explanation for such an unusual mode-dependent behavior. It is shown that excited-state relaxation and decay occur via a multimodal and barrierless (or nearly barrierless) reaction coordinate. In particular, the relaxation out of the Franck-Condon involves a combination of in-plane skeletal stretching and out-of-plane modes, while the second part of the reaction coordinate is dominated exclusively by a different out-of-plane mode. Population of this last mode is shown to be preparatory with respect to both C-O bond breaking and decay via an S(1)/S(0) conical intersection. The observed mode-dependent ring-opening efficiency is explained by showing that the vibrational mode corresponding to the most efficient vibronic transition has the largest projection onto the out-of-plane mode of the reaction coordinate. To support the computationally derived mechanism, we provide experimental evidence that the photochemical ring-opening reaction of 2,2-dimethyl-7,8-benzo(2H)chromene, that similarly to DEC exhibits a mode-dependent photoreaction, has a low ( approximately 1 kcal mol(-1)) activation energy barrier.  相似文献   

13.
Subnanosecond transient-dichroism experiments have been performed to investigate the rotational diffusion of dyes in solution. Dyes and solvents were chosen in a way to obtain information on the influence of size, shape and hydrogen-bonding abilities either of the solute or the solvent molecules. One finds slow orientational relaxation of di-anionic xanthene dyes in alcohols, while oblate cationic dyes rotate faster in spite of their comparable size. The rotational diffusion times for alcohol solutions exceed the theoretical values predicted by the Debye-Einstein model except for prolate molecules. For a solute molecule with internal mobility the rotational diffusion exhibits a partial slip behaviour. It is shown that the deviations from the Debye-Einstein model are restricted to alcohols since for other solvents either with or without strong hydrogen-bonding abilities the experimental values agree with the hydrodynamic model including the stick-boundary condition. Experiments on erythrosine B reveal the influence of size and shape of the attached solvent molecules.  相似文献   

14.
应用溶解度参数理论筛选柴油萃取脱蜡的溶剂   总被引:6,自引:0,他引:6  
采用基团贡献法分别计算了酮类、氯代烃类、酯类、醇类和醚类溶剂的色散溶解度参数(δd)、极性溶解度参数(δp)和氢键溶解度参数(δh),并分析了柴油组分中正构烷烃和芳烃的三维溶解度参数的特点。研究了溶剂溶解度参数与其萃取柴油脱蜡效果的关系。结果表明,除了醇类溶剂之外,在参数贡献图中距离正构烷烃距离越远的溶剂,正构烷烃得率越大,萃取效果越好;色散力贡献比大于2/3的溶剂萃取时蜡膏的含油量明显低于色散力贡献比小于2/3的溶剂。  相似文献   

15.
The charge recombination (CR) dynamics of geminate ion pairs formed by excitation of the ground-state donor-acceptor complexes in polar solvent have been investigated within the framework of stochastic approach. It is shown that for low exergonic reactions these dynamics critically depend on the reorganization energy of intramolecular high-frequency mode. Even moderate reorganization energies (0.1-0.2 eV) significantly accelerate the excited-state population decay making it nearly exponential. In the solvent-controlled regime, the majority of the excited donor-acceptor complexes recombine at nonthermal (hot) stage when the nonequilibrium initial wave packet passes through a number of term crossings corresponding to the transitions with creation of several vibrational quanta. Analysis of this mechanism allows to conclude (i) the CR in viscous solvents proceeds much faster than the diffusive relaxation of solvent, (ii) under certain conditions, the CR rate becomes practically independent of the diffusive component of solvent relaxation which is determined by solvent viscosity, (iii) in contrast to predictions of Marcus theory, the CR rate decreases monotonically with the rise of reaction exergonicity even at small free energy gaps, in accordance with experimental results. Two semiquantitative approaches providing rather simple analytical expressions for the hot charge recombination dynamics are suggested. These approximations give a good reproduction of the excited-state decay in the wide area of model parameters.  相似文献   

16.
Ultrafast photolysis (lambda(ex) = 308 nm) of p-biphenylyltrifluoromethyl diazomethane (BpCN2CF3) releases singlet p-biphenylyltrifluoromethylcarbene (BpCCF3) which absorbs strongly at 385 nm in cyclohexane, immediately after the 300 fs laser pulse. The initial absorption maximum shifts to longer wavelengths in coordinating solvents (nitrile, ether, and alcohol). In low viscosity coordinating solvents, the initial absorption maximum further red shifts between 2 and 10 ps after the laser pulse. Similar effects are observed upon ultrafast photolysis of 2-fluorenyltrifluoromethyl diazomethane (FlCN2CF3) and therefore cannot be associated with torsional motion around the two phenyl rings of the biphenyl compound. Instead, the effect is attributed to the dynamics of solvation of the singlet carbene. The time constant of solvation in normal alcohols lengthens with solvent viscosity in a linear manner. Furthermore, the time constants of the red shift in methanol-O-d (16 ps), ethanol-O-d (26 ps), 2-propanol-OD (40 ps), and 2,2,2-trifluoroethanol-O-d (14 ps) are longer than those recorded in methanol (9.6 ps, KIE = 1.7), ethanol (14.3 ps, KIE = 1.8), 2-propanol (28 ps, KIE = 1.4), and 2,2,2-trifluoroethanol (4.4 ps, KIE = 3.2), which indicates that the solvent reorganization involves formation of hydrogen bonds. The kinetic data are consistent with motion of the solvent to achieve a specific interaction with the carbene, with the creation of a new hydrogen bond. The solvated carbene reacts with the solvent over tens, hundreds, and thousands of ps, depending upon the solvent.  相似文献   

17.
The ultrafast C→E ring-opening reactions of four selectively modified furylfulgides have been studied by means of ultrafast broadband transient absorption spectroscopy after femtosecond laser excitation at λ = 500 nm. A large difference in the dynamics was found in the case of benzannulation at the furyl moiety as an example for an electronic effect by extension of the conjugated π-electron system compared to furylfulgides carrying sterically different alkyl substituents at the central cyclohexadiene (CHD) ring. The measured very similar spectro-temporal absorption maps for the furylfulgides with a methyl or isopropyl group at the CHD ring or an intramolecular alkyl bridge from the CHD to the furyl moiety showed two distinctive excited-state absorptions with slightly different decay times. The first time constant (τ(1) = 0.39-0.57 ps) was assigned to the rapid departure of the excited wavepacket from the Franck-Condon region. The slightly longer second decay time of τ(2) = 0.66-0.92 ps, depending on the compound, was attributed to the electronic deactivation and ring-opening through a conical intersection to the S(0) state. In contrast, the benzannulation at the furyl moiety was found to lead to a bi-phasic excited-state decay with τ(2) = 4.7 ps and a much slower additional contribution of τ(3) = 17.4 ps, ≈25 times longer compared to the normal furylfulgides. The drastic change is attributed to a trapping of excited molecules in a local potential energy minimum en route to the conical intersection.  相似文献   

18.
We observe chlorine radical dynamics in solution following two-photon photolysis of the solvent, dichloromethane. In neat CH(2)Cl(2), one-third of the chlorine radicals undergo diffusive geminate recombination, and the rest abstract a hydrogen atom from the solvent with a bimolecular rate constant of (1.35 +/- 0.06) x 10(7) M(-1) s(-1). Upon addition of hydrogen-containing solutes, the chlorine atom decay becomes faster, reflecting the presence of a new reaction pathway. We study 16 different solutes that include alkanes (pentane, hexane, heptane, and their cyclic analogues), alcohols (methanol, ethanol, 1-propanol, 2-propanol, and 1-butanol), and chlorinated alkanes (cyclohexyl chloride, 1-chlorobutane, 2-chlorobutane, 1,2-dichlorobutane, and 1,4-dichlorobutane). Chlorine reactions with alkanes have diffusion-limited rate constants that do not depend on the molecular structure, indicating the absence of a potential barrier. Hydrogen abstraction from alcohols is slower than from alkanes and depends weakly on molecular structure, consistent with a small reaction barrier. Reactions with chlorinated alkanes are the slowest, and their rate constants depend strongly on the number and position of the chlorine substituents, signaling the importance of activation barriers to these reactions. The relative rate constants for the activation-controlled reactions agree very well with the predictions of the gas-phase structure-activity relationships.  相似文献   

19.
Solvation dynamics in alcohols confined in silica nanochannels was examined by time-resolved fluorescence spectroscopy using coumarin 153 (C153) as a fluorescent probe. Surfactant-templated mesoporous silica was fabricated inside the pores of an anodic alumina membrane. The surfactant was removed by calcination to give mesoporous silica (Cal-NAM) containing one-dimensional (1D) silica nanochannels (diameter, 3.1 nm) whose inner surface was covered with silanol groups. By treating Cal-NAM with trimethylchlorosilane, trimethylsilyl (TMS) groups were formed on the inner surface of the silica nanochannels (TMS-NAM). Fluorescence dynamic Stokes shifts of C153 were measured in alcohols (ethanol, butanol, hexanol, and decanol) confined in the silica nanochannels of Cal- and TMS-NAMs, and the time-dependent fluorescence decay profiles could be best fitted by a biexponential function. The estimated solvent relaxation times were much larger than those observed in bulk alcohols for both Cal- and TMS-NAMs when ethanol or butanol was used as a solvent, indicating that the mobility of these alcohol molecules was restricted within the silica nanochannels. However, hexanol or decanol in Cal- and TMS-NAMs did not cause a remarkable increase in the solvent relaxation time in contrast to ethanol or butanol. Therefore, it was concluded that a relatively rigid assembly of alcohols (an alcohol chain) was formed within the silica nanochannels by hydrogen bonding interaction and van der Waals force between the surface functional groups of the silica nanochannels and alcohol molecules and by the successive interaction between alcohol molecules when alcohol with a short alkyl chain (ethanol or butanol) was used as a solvent.  相似文献   

20.
The excited-state dynamics of protochlorophyllide a, a porphyrin-like compound and, as substrate of the NADPH/protochlorophyllide oxidoreductase, a precursor of chlorophyll biosynthesis, is studied by femtosecond absorption spectroscopy in a variety of solvents, which were chosen to mimic different environmental conditions in the oxidoreductase complex. In the polar solvents methanol and acetonitrile, the excited-state dynamics differs significantly from that in the nonpolar solvent cyclohexane. In methanol and acetonitrile, the relaxation dynamics is multiexponential with three distinguishable time scales of 4.0-4.5 ps for vibrational relaxation and vibrational energy redistribution of the initially excited S1 state, 22-27 ps for the formation of an intermediate state, most likely with a charge transfer character, and 200 ps for the decay of this intermediate state back to the ground state. In the nonpolar solvent cyclohexane, only the 4.5 ps relaxational process can be observed, whereas the intermediate intramolecular charge transfer state is not populated any longer. In addition to polarity, solvent viscosity also affects the excited-state processes. Upon increasing the viscosity by adding up to 60% glycerol to a methanolic solution, a deceleration of the 4 and 22 ps decay rates from the values in pure methanol is found. Apparently not only vibrational cooling of the S1 excited state is slowed in the more viscous surrounding, but the formation rate of the intramolecular charge transfer state is also reduced, suggesting that nuclear motions along a reaction coordinate are involved in the charge transfer. The results of the present study further specify the model of the excited-state dynamics in protochlorophyllide a as recently suggested (Chem. Phys. Lett. 2004, 397, 110).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号