首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
采用金属Ga升华法在石墨烯/蓝宝石衬底上生长了高质量GaN纳米线,研究了不同的生长条件,如NH3流量、反应时间、催化剂和缓冲层等对GaN纳米线形貌的影响,采用扫描电子显微镜(SEM)对GaN纳米线进行表征.研究发现,在适当的NH3流量且无催化剂时,衬底上可以生长出粗细均匀的GaN纳米线.反应时间为5 min时,纳米线密集分布在衬底上,表面光滑.在石墨烯/蓝宝石上预先低温生长GaN缓冲层,然后升温至1 100℃进行GaN纳米线生长,获得了具有择优取向的GaN纳米线结构.研究表明,石墨烯和缓冲层对获得GaN纳米线结构有序阵列具有重要的作用.  相似文献   

2.
研究了一种无金属催化剂生长GaN纳米线阵列的方法。通过HCl气体作为催化剂,利用氢化物气相外延(HVPE)系统在GaN/sapphire模板上制备出纯净的GaN纳米线阵列;利用扫描电镜(SEM)、能量分散X射线荧光(EDX)谱和透射电镜(TEM)测试,研究了生长条件的变化对GaN纳米线阵列的影响,分析了GaN纳米线阵列的生长过程并探索了其生长机理,为GaN纳米线阵列的可控生长提供了理论依据。  相似文献   

3.
利用射频磁控技术,在Si衬底上以Pd为缓冲层、Ga2O3粉末作为生长GaN的Ga源,成功制备出大量GaN纳米线。通过扫描电子显微镜、透射电子显微镜和高分辨透射电子显微镜观察分析得出GaN纳米线为单晶结构,纳米线的直径为10~60nm,长度达几十个微米。X射线衍射和X射线能量散射谱显示合成的纳米线为GaN单晶结构。傅里叶变换红外吸收光谱和光致发光光谱测试表明,制得的GaN纳米线与GaN体材料相比具有不同的光学特性。  相似文献   

4.
采用化学气相沉积法(CVD)制备了大量的GaN纳米线,使用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、X射线能谱(EDS)和光致发光光谱仪(PL)对制备的样品形貌、结构、成分和发光性能进行了表征,并对其进行降解罗丹明B水溶液的光催化性能测试。结果表明,通过化学气相沉积法制备出了高质量的GaN纳米线,且GaN作为催化剂有一定的光催化效果。罗丹明B水溶液会因染料自身敏化作用而降解,但实验发现达到相同降解水平时无催化剂要比有催化剂至少多10 min。GaN作为催化剂时的降解速率k值为0.068 min-1,其数值相对于无催化剂时提高了17.2%。  相似文献   

5.
基于气液固(VLS)反应机制,采用厚度为2~3 nm的金属镍作为催化剂,金属镓和氨气分别用作Ⅲ族和Ⅴ族的生长源,在自行改造的化学气相沉积(CVD)设备内获得了大面积GaN纳米线。通过扫描电镜(SEM)、能量分散X射线荧光(EDX)谱和透射电镜(TEM)测试,表明GaN纳米线的成核及生长与反应室气路结构有密切关系,水平弯管式气路将有利于GaN纳米线的生长。此外,生长气流将直接影响GaN纳米线的生长状况,生长温度为920℃、NH3和N2的气流量分别为100和500 cm3/min时,可以获得形貌较好的纳米线。同时,探索了Ga源与样品位置间的距离对纳米线中Ga和N的质量分数的影响,并分析了其影响机理。  相似文献   

6.
7.
本文采用CVD法,以甩涂在衬底硅片上的Ga2O3薄膜和NH3作为原料,成功制备出大量GaN纳米线。采用X射线衍射仪(XRD)、场发射扫描电镜(FESEM)、能量色散谱仪(EDS)和高分辨透射电镜(HRTEM)对样品进行了成分和结构分析,并简单讨论了其生长机理。结果表明:产物为平直光滑的GaN纳米线,其直径为30nm-50nm。长度可达几十微米,纳米线为高质量的六方纤锌矿GaN晶体。  相似文献   

8.
9.
针对自下而上生长GaN纳米线的尺寸、形态、取向不易控制的问题,文中采用自上而下刻蚀的方法来制备GaN纳米线材料。以图形化的金属Ni作为掩膜对GaN进行ICP刻蚀,系统研究了刻蚀参数,主要是ICP功率以及RF功率对GaN纳米线形貌以及拉曼、PL光谱的影响,同时也对比了干法刻蚀后,有无湿法处理的影响。研究发现,当ICP功率为1 000 W,RF功率为100 W时,GaN纳米线的拉曼和PL光谱强度较大,表明此功率下刻蚀的纳米线损伤较小。经过KOH浸泡30 min后,GaN纳米线的形貌得到了改善,拉曼和PL光谱强度均优于单纯的干法刻蚀,为下一步器件的制备提供了良好的材料基础。  相似文献   

10.
11.
一维GaN纳米材料生长方法   总被引:2,自引:0,他引:2  
介绍了国际上近年来合成一维GaN纳米材料的研究情况,分析了模板限制生长法、基于VLS机制的催化反应生长法、氧化辅助生长法和两步模式生长法合成GaN纳米线的工艺特点,展望了GaN纳米线研究重点和方向。  相似文献   

12.
We report experiments on the formation of GaN nanowires on epitaxial GaN using thin layers of Ni. GaN covered with Ni shows roughening that is strongly dependent on the thickness of the Ni layer and the annealing conditions. With the initial Ni thickness of 0.8 nm we observe formation of Ni-filled antidots. These act as nucleation sites in the growth of GaN nanowires, allowing for the preparation of nanowires with an average diameter as small as 30 nm. Dense and well-oriented nanowires are formed by pulsed metallorganic chemical vapor deposition at 750°C. The size of the Ni features determines the diameter of the GaN nanowires, resulting in good control over the formation process.  相似文献   

13.
Large-scale GaN nanowires are successfully synthesized by ammoniating Ga2O3 films on Nb layer deposited on Si(111) substrates at 850 ℃. X-ray diffraction (XRD), scanning electron microscopy (SEM), field-emssion transmission electron microscope(FETEM), Fourier transformed infrared spectrum(FTIR) are used to characterize the structural and morphological properties of the as-synthesized GaN nanowires. The results reveal that the nanowires are pure hexagonal GaN wurtzite structure with a length of about several microns and a diameter between 50 nm and 100 nm. Finally, discussed briefly is the formation mechanism of gallium nitride nanowires.  相似文献   

14.
在管式炉中用化学气相沉积(CVD)法在高温下用金做催化剂,首次通过氨化Ga2O3和金属Ga粒组成的混合镓源制备出高质量的GaN纳米线.运用SEM,TEM,XRD以及Ramah,PL等表征手段分析了氮化镓纳米线的形貌、结构以及发光性质.最后着重探讨了通过改变镓源的构成、氨化温度以及镓源和生长衬底间的距离等生长条件,研究了...  相似文献   

15.
We report on the growth and characterization of high-quality GaN nanowires for hydrogen sensors. We grew the GaN nanowires by catalytic chemical vapor deposition (CVD) using gold thin films as a catalyst on a Si wafer with an insulating SiO2 layer. Structural characterization of the as-grown nanowires by several methods shows that the nanowires are single-crystal wurtzite GaN.␣Photoluminescence measurements under 325 nm excitation show a near-band-edge emission peak around ∼3.4 eV. The hydrogen sensors are fabricated by contacting the as-grown GaN nanowires by source and drain electrodes and coating them with a thin layer of Pd. Hydrogen sensing experiments using the fabricated devices show high sensitivity response (ppm detection limit at room temperature) and excellent recovery. This work opens up the possibility of using high-quality GaN nanowire networks for hydrogen sensing applications.  相似文献   

16.
Large quantities of gallium nitride(GaN) nanowires have been prepared via ammoniating the Ga2O3 films deposited on the oxidized aluminum layer at 950℃ in a quartz tube. The nanowires have been confirmed as crystalline wurtzite GaN by X-ray diffraction, X-ray photoelectron spectrometry scanning electron microscope and selected-area electron diffraction. Transmission electron microscope (TEM) and scanning electron microscopy(SEM) reveal that the nanowires are amorphous and irregular, with diameters ranging from 30 nm to 80 nm and lengths up to tens of microns. Selected-area electron diffraction indicates that the nanowire with the hexagonal wurtzite structure is the single crystalline. The growth mechanism is discussed briefly.  相似文献   

17.
Cu‐nanowire‐doped graphene (Cu NWs/graphene) is successfully incorporated as the back contact in thin‐film CdTe solar cells. 1D, single‐crystal Cu nanowires (NWs) are prepared by a hydrothermal method at 160 °C and 3D, highly crystalline graphene is obtained by ambient‐pressure CVD at 1000 °C. The Cu NWs/graphene back contact is obtained from fully mixing the Cu nanowires and graphene with poly(vinylidene fluoride) (PVDF) and N‐methyl pyrrolidinone (NMP), and then annealing at 185 °C for solidification. The back contact possesses a high electrical conductivity of 16.7 S cm?1 and a carrier mobility of 16.2 cm2 V?1 s?1. The efficiency of solar cells with Cu NWs/graphene achieved is up to 12.1%, higher than that of cells with traditional back contacts using Cu‐particle‐doped graphite (10.5%) or Cu thin films (9.1%). This indicates that the Cu NWs/graphene back contact improves the hole collection ability of CdTe cells due to the percolating network, with the super‐high aspect ratio of the Cu nanowires offering enormous electrical transport routes to connect the individual graphene sheets. The cells with Cu NWs/graphene also exhibit an excellent thermal stability, because they can supply an active Cu diffusion source to form an stable intermediate layer of CuTe between the CdTe layer and the back contact.  相似文献   

18.
Fabricating single‐crystalline gallium nitride (GaN)‐based devices on a Si(100) substrate, which is compatible with the mainstream complementary metal‐oxide‐semiconductor circuits, is a prerequisite for next‐generation high‐performance electronics and optoelectronics. However, the direct epitaxy of single‐crystalline GaN on a Si(100) substrate remains challenging due to the asymmetric surface domains of Si(100), which can lead to polycrystalline GaN with a two‐domain structure. Here, by utilizing single‐crystalline graphene as a buffer layer, the epitaxy of a single‐crystalline GaN film on a Si(100) substrate is demonstrated. The in situ treatment of graphene with NH3 can generate sp3 C? N bonds, which then triggers the nucleation of nitrides. The one‐atom‐thick single‐crystalline graphene provides an in‐plane driving force to align all GaN domains to form a single crystal. The nucleation mechanisms and domain evolutions are further clarified by surface science exploration and first‐principle calculations. This work lays the foundation for the integration of GaN‐based devices into Si‐based integrated circuits and also broadens the choice for the epitaxy of nitrides on unconventional amorphous or flexible substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号