首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Crown Ether Complexes of Lead(II). The Crystal Structures of [PbCl(18-Krone-6)][SbCl6], [Pb(18-Krone-6)(CH3CN)3][SbCl6]2 und [Pb(15-Krone-5)2][SbCl6]2 . [PbCl(18-crown-6)][SbCl6] has been prepared in low yield besides [Pb(CH3)2(18-crown-6)][SbCl6]2 by the reaction of Pb(CH3)2Cl2 with antimony pentachloride in acetonitrile solution in the presence of 18-crown-6, forming pale-yellow crystals. The other two title compounds are formed as colourless crystals by the reaction of PbCl2 with antimony pentachloride in acetonitrile solutions in the presence of 18-crown-6 and 15-crown-5, respectively. The complexes were characterized by IR spectroscopy and by crystal structure determinations. [PbCl(18-crown-6)][SbCl6]: Space group P21/c, Z = 8, 5 003 observed unique reflections, R = 0.046. Lattice dimensions at - 80°C: a = 1 386.9; b = 1 642.7; c = 2 172.1 pm, β = 92.95°. The lead atom in the cation [PbCl(18-crown-6)]+ is surrounded in an almost hexagonal-planar construction by the six oxygen atoms of the crown ether and an axially oriented Cl atom. [Pb(18-crown-6)(CH3CN)3][SbCl6]2: Space group P1 , Z = 2, 6 128 observed unique reflections, R = 0.076. Lattice dimensions at - 70°C: a = 1 228.0; b = 1 422.9; c = 1 463.2 pm, α = 69.08°; β = 65.71°; γ = 64.51°. In the cation [Pb(18-crown-6)(CH3CN)3]2+ the lead atom is coordinated by the six oxygen atoms of the crown ether and by the three nitrogen atoms of the acetonitrile molecules. The structure determination is restricted by disorder. [Pb( 15-crown-5)2][SbCI6]2: Space group P63/m, Z = 6, 5 857 observed unique reflections, R = 0.059. Lattice dimensions at -70°C: a = b = 2 198.5; c = 1499.4 pm, α = β = 90°, γ = 120°. In the cation [Pb(l5-crown-5)2]2 the lead atom is sandwich-like coordinated by the ten oxygen atoms of the two crown ether molecules. The structure determination is restricted by disorder.  相似文献   

2.
Summary Eighteen new coordination compounds are reported with diglyme (dgm) and pentaglyme (pgm) as ligands:viz. [M(dgm)2](SbCl6)2 with M=MgII, CaII, SrII, MnII, FeII, CoII, NiII, CuII, and ZnII; [M(pgm)](SbCl6)2 with M=MnII, FeII,CoII, NiII, CuII, and ZnII; and [M(pgm)](SbCl6)2 · H2O with M=MgII, CaII, and SrII. The metal(II) ions are hexacoordinated by the ether-oxygens of two diglyme molecules or of one pentaglyme molecule. The coordinated diglyme molecules are in the TGTT¯GT conformation.  相似文献   

3.
A new complex compound, [K2(18-crown-6)2[K(18-crown-6)(EtOH)]2[Er(NCS)6](SCN) (I), was synthesized and its crystal structure was studied by X-ray diffraction. In this work, the synthes and X-ray difraction stady of the crystals of a new complex, hexakis (isothiocyanato) erbiu(III) thiocyanate bis(18-crown-6) dipotassium bis(18-crown-6) ethanolpotassium], [K2(18-crown-6)2][K(18-crown-6)(ETON)]2[Er(NCS)6(SCN)(I)] are described. In crystal I, the alternating [Er(NCS)6]3? anions and binuclear complex cation [K(18-crown-6)2]2+ from infinite chains via the F-S bonds, while two complex cations [K(18-crown-6)(ETON)]+ and the statistically disordered SCN? anion between them are linked by the hydragen bonds O-H…S and O-H…N. Complex I contains the host-guest complex cations [K2(18-crown-6)2)]2+ and [K(18-crown-6)(ETON)]+ [1]. The alternating octabedral [Er(NCS)6]3? anions and binuclear complex cations [K2(18-crown-6)2]2+of crystal I form infinite chains via the K-S bonds, while two complex cations [K(18-crown-6)(EtOH)]+ and the statistically disordered SCN? anion lying between them are linked by interionic hydrogen bonds O-H…S and O-H…N. Complex I contains the host-guest complex cations [K2(18-crown-6)2]2+ and [K(18-crown-6)(EtOH)]+ [1].  相似文献   

4.
[Sb(12-Crown-4)2(CH3CN)][SbCl6]3 and [Bi(12-Crown-4)2(CH3CN)][SbCl6]3, first Trications of Antimony(III) and Bismuth(III) The crown ether complexes [M(12-crown-4)2(CH3CN)][SbCl6]3 with M = Sb and Bi are formed by the reaction of antimony trichloride and bismuth trichloride, respectively, with antimony pentachloride in acetonitrile solution in the presence of 12-crown-4. They form colourless, moisture sensitive crystals, which were characterized by X-ray structure determinations and by IR spectroscopy. The complex with M = Sb was also characterized by 121Sb Mössbauer spectroscopy. Both complexes crystallize isotypically in the orthorhombic space group Pbcn with four formula units per unit cell. M = Sb: 3 483 observed unique reflections, R = 0.038. M = Bi: 2 958 observed unique reflections, R = 0.036. The compounds consist of SbCl6? ions and trications [M(12-crown-4)2(CH3CN)]3+, in which the M3+ ions are ninefold coordinated by the eight oxygen atoms of the crown ether molecules and by the nitrogen atom of the acetonitrile molecule. The lone pair of the M3+ ions has no steric effect.  相似文献   

5.
Six mononuclear complexes are reported with the tetradentate ligand N,N′-bis(2-pyridylmethyl)-1,3-propanediamine, (abbreviated as pypn) i.e. [Cu(pypn)(ClO4)2](H2O)1/2 (1), [Fe(pypn)Cl2](NO3) (2), [Zn(pypn)Cl](ClO4) (3), [Co(pypn)(NCS)2](ClO4) (4), [Co(pypn)(N3)2](ClO4) (5), [Zn(pypn)(NCS)2] (6). The synthesis and X-ray crystal structures of all six compounds and their spectroscopic properties are presented.The geometry of the Cu2+, Co3+, Zn2+, Fe3+ ions is essentially octahedrally based, with the mm conformation (for Cu) and msf conformations for the other 3 metal ions; in compound 3 the geometry around the Zn2+ is distorted trigonal bipyramidal. The stabilisation of the crystal lattices is maintained by interesting, relative strong hydrogen bonds.  相似文献   

6.
The structures of the [M(18C6)]2+ cations, where M = Zn, Cu, Hg, Ni, Co, and Pt, and cis- and trans-[M(18C6)(HFA)2]/[M(18C6)(NO3)2] molecules in the gas phase have been calculated by the density functional theory method in the B3LYP/6-31G*//6-311++G** + LanL2Dz approximation. Geometry optimization has been performed, and the strength of binding of the central cation to the crown ether (18C6) and the degree of structural similarity of the [M(18C6)(HFA)2] compounds for different central atoms M have been evaluated. For all [M(18C6)(NO3)2]/[M(18C6)(HFA)2] molecules (M = Zn, Cu, Hg, Ni, Co, Pt), the vertical ionization potential and the vertical electron affinity have been calculated. These parameters are of interest for analysis of the stability of volatile compounds [M(18C6)(HFA)2] to donor–acceptor interactions with other components of the gas phase, for example, with water vapor, which is usually a Lewis base with respect to the systems in question and can donate electron density in the course of complexation with the central atom. The propensity of the [M(18C6)(NO3)2]/[M(18C6)(HFA)2] molecules to react with water is considered for a wider range of metals M2+ = Ba2+, Sr2+, Pb2+, Mn2+, Cd2+, Zn2+, Cu2+, Hg2+, Co2+, Ni2+, and Pt2+, with taking into account the degree of matching between the ionic radii of M2+ cations and the 18C6 cavity size.  相似文献   

7.
Two complexes are synthesized: diaquabromo(18-crown-6)rubidium [RbBr(18-crown-6)(H2O)2] (I) and triaqua(18-crown-6)barium dibromide monohydrate [Ba(18-crown-6)(H2O)3]2+ 2Br? · H2O (II). The orthorhombic structure of compound I (space group Pnma, a = 10.124 Å, b = 15.205 Å, c = 12.544 Å, Z = 4) and the monoclinic structure of compound II (space group C 2/c, a = 17.910 Å, b = 10.315 Å, c = 14.879 Å, β = 123.23°, Z = 4) are determined by a direct method and refined by the full-matrix least-squares method in the anisotropic approximation to R = 0.063 (I) and 0.042 (II) for all 2293 (I) and 3363 (II) independent measured reflections (CAD-4 automated diffractometer, λMoK α). The complex molecule [RbBr(18-crown-6)(H2O)2] in compound I and the randomly disordered cation [Ba(18-crown-6)(H2O)3]2+ in compound II are of the host-guest type: their Rb+ or Ba2+ cation (its coordination number is nine) is located in the cavity of the 18-crown-6 ligand and coordinated by all six O atoms. In structure I, the coordination polyhedron of Rb+ is a distorted hexagonal pyramid with a triple apex at the Br? ligand and two O atoms of the water molecules. In structure II, the Ba2+ polyhedron is a distorted hexagonal bipyramid with one apex at the O atom of the water molecule and the other split apex at two O atoms of water molecules.  相似文献   

8.
The crystal structure of the title compound, catena-poly[bis[aqua(18-crown-6)­potassium] di­aqua(18-crown-6)­potassium [[tetra-μ-benzoato-2:3κ8O:O′-μ-cyano-1:2κ2C:N-tetra­cyano-1κC-irondirhodium(RhRh)]-μ-cyano-1κC:3′κN] octahydrate], [K(18-crown-6)(H2O)]2[K(18-crown-6)(H2O)2]­[FeRh2(C7H5O2)4(CN)6]·8H2O, where (18-crown-6) is 1,4,7,10,13,16-hexaoxa­cyclo­octa­decane (C12H24O6), has been determined. Ferric cyanides connect the dirhodium units to form a one-dimensional chain compound. [K(18-crown-6-ether)(H2O)2] cations (with inversion symmetry) and [K(18-crown-6-ether)(H2O)] cations (in general positions) are located between the chains.  相似文献   

9.
Summary The interconversion of carbyne, carbyne and hydride complexes derived from protonations oftrans-[M(CNMe)2(dppe)2](M = Mo or W) has been studied. The initial site of protonation is shown to be the isonitrile nitrogen and all protonations proceed through the common carbyne intermediatetrans-[M(CNHMe)(CNMe)(dppe)2]+. The CNHMe group in traps-[M(CNHMe)2(dppe)2]2+ is shown to be susceptible to electrophilic attack at N and nucleophilic attack at ligating C, the new complexestrans-[W(CNH2Me)(CNHMe)(dppe)2](BF4)3 andtrans-[Mo(CHNHMe)(CNHMe)(dppe)2]BF4 being formed, respectively.  相似文献   

10.
New host-guest compounds are synthesized and studied by X-ray diffraction analysis: (18-crown-6) potassium 0.84(diiodobromide) 0.16(dibromoiodide), [K(18-crown-6)]+ · (Br1.16I1.84), (I) and diaqua (18-crown-6)chlororubidium, [RbCl(18-crown-6)(H2O)2], (II). The crystals of compound I are monoclinic (space group P21/n, a = 9.157 ?, b = 8.589 ?, c = 14.072 ?, β = 102.27°, Z = 2). The structure of compound II is orthorhombic (space group Pnma, a = 9.813 ?, b = 15.231 ?, c = 12.629 ?, Z = 4). The structures are solved by a direct method and refined by the full-matrix anisotropic least squares to R = 0.062 (I) and 0.079 (II) for 3149 (I) and 2840 (II) independent reflections (CAD-4 automated diffractometer, λMoK α radiation). The crystal structures of compounds I and II are different: compound I is built of infinite chains of the alternating cations [K(18-crown-6)]+ and mixed halide anions linked by weak coordination bonds K-Br or K-I, whereas individual molecules [RbCl(18-crown-6)(H2O)2] form structure II. Original Russian Text ? A.N. Chekhlov, 2009, published in Zhurnal Neorganicheskoi Khimii, 2009, Vol. 54, No. 8, pp. 1385–1391.  相似文献   

11.
Synthesis, Crystal Structure, and 12Sb-Mössbauer Spectrum of [SbCl2(18-Crown-6)]+SbCl6? The title compound, which has been prepared by the reaction of antimony trichloride and antimony pentachloride in the presence of 18-crown-6 in acetonitrile solution, is characterized by its 121Sb-Mössbauer spectrum and by an X-ray structure determination. Space group P21, Z = 2, 2439 observed unique reflections, R = 0.045, wR = 0.043. Lattice dimensions at ?80°C: a = 780.6(7), b = 1297.5(9), c = 1 278.5(10) pm, β = 100.56(7)°. The structure of [SbCl2(18-crown-6)]+SbCl6? contains cations in which the antimony atom in the first coordination sphere is surrounded in a ?-trigonal-bipyramidal fashion by two oxygen atoms of the crown ether in axial position as well as in the equatorial position by the two chlorine atoms and the lone electron pair.  相似文献   

12.
The reaction of UO2(OAc)2 ⋅ 2H2O with the biologically inspired ligand 2-salicylidene glucosamine (H2 L1 ) results in the formation of the anionic trinuclear uranyl complex [(UO2)3(μ3-O)( L1 )3]2− ( 1 2−), which was isolated in good yield as its Cs-salt, [Cs]2 1 . Recrystallization of [Cs]2 1 in the presence of 18-crown-6 led to formation of a neutral ion pair of type [M(18-crown-6)]2 1 , which was also obtained for the alkali metal ions Rb+ and K+ (M=Cs, Rb, K). The related ligand, 2-(2-hydroxy-1-naphthylidene) glucosamine (H2 L2 ) in a similar procedure with Cs+ gave the corresponding complex [Cs(18-crown-6)]2[(UO2)3(μ3-O)( L2 )3 ([Cs(18-crown-6)]2 2 ). From X-ray investigations, the [(UO2)3O( Ln )3]2− anion (n=1, 2) in each complex is a discrete trinuclear uranyl species that coordinates to the alkali metal ion via three uranyl oxygen atoms. The coordination behavior of H2 L1 and H2 L2 towards UO22+ was investigated by NMR, UV/Vis spectroscopy and mass spectrometry, revealing the in situ formation of the 1 2− and 2 2−dianions in solution.  相似文献   

13.
Interaction in Crystals: The Keyboard of Na⊕ Coordination Numbers in Its Carbazole Anion Salts Some local minima in the shallow potential of the system carbazole anion, sodium cation, and the ethers tetrahydrofuran, 1,2-dimethoxyethane, diglyme, triglyme, tetraglyme, 15-crown-5 as well as 2.2.1-cryptand are explored experimentally and by quantum-chemical calculations. Three prototype contact-ion multiples of Na⊕-solvated carbazole anion M? salts have been crystallized and structurally characterized: polyether-solvated monomers [M?Na⊕solv]1, solvent-shared dimers [M?Na⊕solv]2, and solvent-separated polyions [(M?)nNa?solv](n?1)? [Na⊕solv](n?1). The Na⊕ coordination numbers stretch from 3 to 7 as illustrated by the compounds [(M?)3Na+]??[Na+(2.2.1-crytand)]2 for 3 and 7, [(M?)2Na+(THF)2]? [Na⊕(2.2.1-cryptand)] for 4 and 7, [M? Na+(diglyme)]2 for 5, or [M? Na+(l 5-crown-5)] for 6. Structural comparison is based on literature analogies as well as on results of MNDO calculations concerning charge distribution and enthalpies of formation. Taken together, the results demonstrate the delicate energy balance, by which cation solvation can influence the formation of organic salts.  相似文献   

14.
The dicationic arene complexes [CpM(arene)](BF4)2 (arene = C6H6, 1,3,5-C6H3Me3, or C6Me6) were synthesized by the reactions of the solvated complexes [CpM(MeNO2)3](BF4)2 (M = Rh, Ir) with benzene and its derivatives. The solvated complexes were generated in situ by abstraction of I from [CpMI2]2 with AgBF4. A procedure was developed for the synthesis of the iodide [CpRhI2]2 based on the reaction of the cyclooctadiene derivative CpRh(1,5-C8H12) with I2. The structure of the [CpRh(C6Me6)](BF4)2 complex was established by X-ray diffraction analysis.Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1871–1874, September, 2004.  相似文献   

15.
The reactions of benzo-15-crown-5 and dibenzo-18-crown-6 with 1 equiv. of [(mes)Ru(MeNO2)3]2+ (mes = 1,3,5-C6H3Me3) give the mononuclear complexes [(mes)Ru(η6-benzo-15-crown-5)]2+ (1) and [(mes)Ru(η6-dibenzo-18-crown-6)]2+ (2) in 50% yield. Similar reaction with 2 equiv. of [(mes)Ru(MeNO2)3]2+ produces the dinuclear complex [(μ-η66-dibenzo-18-crown-6)Ru2(mes)2]4+ (3) in 96% yield as a 2:3 mixture of cis- and trans-isomers. Structures of 2(OTf)2 and trans-3(OTf)4 were confirmed by X-ray diffraction. The NMR titration showed that mononuclear dications 1 and 2 bind Na+ ion less effective (Ka = 600 and 250 M-1) than free benzo-15-crown-5 and dibenzo-18-crown-6 (Ka = 2 × 105 and 5 × 106 M−1). The dinuclear tetracation 3 does not bind Na+ within measurable limits of NMR titration method. The electrochemical behaviour of complexes 1-3 was studied in propylene carbonate solution. They exhibit a partially chemically reversible Ru(II)/Ru(I) reduction, which in the case of the dinuclear complex 3 proceeds through two slightly separated steps. The redox activity of the complexes is substantially unaffected by the presence of sodium ion.  相似文献   

16.
In order to investigate the relative effects of the differences between the structures and lipophilicities of 1, 10-dioxa-4, 7, 13, 16-tetra-azacyclo-octadecane (TA-18-crown-6) and the tetrabenzyl derivative of 1,10-dioxa-4, 7, 13, 16-tetra-azacyclo-octadecane (TBTA-18-crown-6) on their extraction-abilities and -selectivities for transition metal cations, constants of the overall extraction (logK ex) of 1:1 (M:L) complexes, the distribution (K D) for two diluents (CH2Cl2 and CHCl3) with different dielectric constants have been determined at 25 ± 0.1 °C. The magnitude of logK ex is largely determined by that of K D. The equilibrium constants of TA-18-crown-6 have been compared with those of TBTA-18-crown-6. It is found that:(i) logK ex sequences of TA-18-crown-6 and TBTA-18-crown-6 for transition metals in CH2Cl2 lie in order: Fe3+ > Cu2+ > Mn2+ > Co2+ > Cd2+ > Ni2+ > Zn2+ and Fe3+ > Cu2+ > Co2+ > Mn2+ > Ni2+ > Cd2+ > Zn2+ respectively; (ii) the stability sequences of two types of tetra-aza-crown ethers with the transition metal cations in CHCl3 are the same as follows: Fe3+ > Ni2+ > Cu2+ > Co2+ > Zn2+ > Cd2+ > Mn2+, and (iii) unusual selectivities are observed for transition metal-tetra-aza-crowns, e.g. the high Fe3+/M n+ selectivity factors (Sf) of TA-18-crown-6, except for the competitive-extractions for the special case in CHCl3 of TBTA-18-crown-6, it was found that the Mn2+/M n+ values were relatively higher according to the other transition metal cations. A systematic sequence in these two types of solvents is not found for a given transition metal cation in terms of the variation of selectivity with the tetra-aza-crown ethers. The results provide alternatives for the rational design of other specific ligands on the transition metal cations.  相似文献   

17.
Potassium-mirror reduction of tetracyanoethylene (TCNE) acceptor in tetrahydrofuran affords K(THF)2 TCNE salt (1) showing double TCNE/K chains assembled via unusual μ3-TCNE-bridging of potassium cations. These parallel ladder-type chains are further tethered by pairs of THF bridges between potassium centers and by intermolecular π-bonding in (TCNE)22? dimers, and this results in formation of quasi-2-D coordination networks. In the presence of crown-ether ligand, the same potassium-mirror reduction lead to formation of [K(18-crown-6)(THF)2]TCNE salt (2) in which monomeric tetracyanoethylene anion-radicals are positioned between bulky [K+(18-crown-6)(THF)2] counter-ions. In comparison, crystallization of tetracyanoethylene anion-radicals with K+(18-crown-6) counter-ions in dichloromethane affords K(18-crown-6)TCNE salt (3) consisting of 1-D chains with 1,2-(N,N’)-TCNE bindings of potassium cations (nested in the crown-ether cavities). Temperature-dependent magnetic susceptibility study revealed essentially isolated tetracyanoethylene anion-radicals (S = 1/2) in this 1-D coordination polymer.  相似文献   

18.
The novel dioxime, (4Z,5E)-pyrimidine-2,4,5,6(1H,3H)-tetraone 4,5-dioxime (H2-PTD) was obtained by the interaction of 6-amino-5-nitrosopyrimidine-2,4(1H,3H)-dione with hydroxylamine hydrochloride. X-ray structural analysis determined the 4Z,5E-configuration of the corresponding monoanion, pyrimidine-2,6(1H,3H)-dione-4-iminole-5-iminolate in the inclusion complexes with diazonia-18-crown-6 (1,4,10,13-tetraoxa-7,16-diazoniacyclooctadecane) (H2-DA18C6)2+ (complex (1), stoichiometry 2 : 1), and its ammonium salt in the complex with the cis-syn-cis isomer of dicyclohexano-18-crown-6(DCHA) (cis-syn-cis-2,5,8,15,18,21-hexaoxatricyclo (20.4.0.09,14)hexacosane) (complex (2), stoichiometry 1 : 1). X-ray data were also obtained for the complex of the product of (H2-PTD) cyclization, (1,2,5)-oxadiazolo(3,4-d)pyrimidine-5,7(4H,6H)-dione (OPD) with diaqua diaza-18-crown-6 (complex (3), stoichiometry 2 : 2 : 1).In (1) the (H-PTD)- anions are joined into dimers through the bifurcated OH...N and OH...O hydrogen bonds and alternate with diazonia-18-crown-6 cations in the chains sustained by the NH(crown) ... O and NH(crown) ...N interactions. The chains are further combined into the 3D network via NH...O(crown) hydrogen bonds. In (2) the self-complementarity of the (H-PTD)- anions facilitates their assembly into the chain via OH...N, NH...O and OH...O interactions. The ammonium cations bridge each anion and the DCHA macrocycle with the formation of a ribbon developed along the [101] direction in the unit cell. Ternary complex (3) is built of the neutral species, diaza-18-crown-6, water molecules and dimers of OPD alternated in the chains and held together by OH...O and NH...O hydrogen bonds.  相似文献   

19.
Complexes of Co(II), Ni(II), Zn(II), and Cu(II) perchlorates and hexafluorophosphates with 4′-(4″-benzo-15-crown-5)oxy-2,2′:6′,2″-terpyridine (L) [M(L)2](ClO4)2 · 3H2O and [M(L)2](PF6)2 · 2H2O were synthesized. The spectral criteria of ligand coordination through the terpyridine nitrogen atoms were established. An assumption concerning the benzo-15-crown-5 conformation in the ligand molecule in the synthesized complexes was made. The extraction and ion-selective properties of L were studied.  相似文献   

20.
The mixed iron(III) complex, namely, 0.8[diaqua(bromo)bis(nitrato-O,Os’)iron(III)] 0.2[diaqua(dibromo)(nitrato-O,Os’)iron(III)] 18-crown-6 monohydrate, was obtained and studied by X-ray diffraction analysis. Its structure (a=8.250 Å, b=14.910 Å, c=10.330 Å, β=113.38°, space group P21/m, Z=2) was solved by the direct method and refined by the full-matrix least-squares method in the anisotropic approximation to R=0.117 from 2140 independent reflections (CAD4 automated diffractometer, λMOK α). The structure (in crystallographic plane m) contains the hydrate water molecule and randomly disordered [FeBr1.2(NO3)1.8(H2O)2] and 18-crown-6 molecules, which are united through hydrogen bonds into chains running along the axis x. The Fe3+ cation does not interact with the 18-crown-6 molecule; i.e., this complex is not a host-guest compound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号