首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, electrorheological (ER) behavior of suspensions prepared from 3.0 and 9.0 μm diatomite particulate, dispersed in insulating silicone oil (SO) medium was investigated. Sedimentation stabilities of suspensions (c = 5 wt%) prepared using these diatomite powders were determined to be 32 days (d = 3 μm) and 24 days (d = 9 μm), respectively. ER activity of all the suspensions was observed to increase with increasing electric field strength, concentration and decreasing shear rate. Shear stress of diatomite suspensions increased linearly with increasing concentrations of the particles and with the applied electric field strength. Electric field viscosity of all the suspensions decreased sharply with increasing shear rate and particle size, showing a typical shear thinning non-Newtonian visco-elastic behavior. Effects of high temperature and polar promoter onto ER activity ofdiatomite/SO system were also investigated.  相似文献   

2.
Surfactants influence the electrorheological (ER) response in two ways. At low surfactant concentrations, they enhance the ER response by enhancing the particle polarizability; at high concentrations, the response degrades (nonlinear ER response). The nonlinear ER behavior arises from the formation of surfactant bridges between the particles at high surfactant concentrations. A surfactant bridge model was introduced to explain the nonlinear behavior (tau0 proportional to En, n approximately 1) of surfactant-activated ER suspensions when surfactant bridges were formed between the particles. Here, the surfactant bridge model is extended for the prediction of both the linear and nonlinear ER behaviors of surfactant-activated ER suspensions over the low and high surfactant concentrations (for Brij 30, from 0 to 7 wt%), regardless of the formation of surfactant bridges between the particles. For 20 wt% neutral alumina suspensions in silicone oil activated by Brij 30, the predicted ER behaviors show almost the same Brij 30 concentration and electric field strength dependence. It predicts the linear E2 dependence of the ER response at low surfactant concentrations and the nonlinear ER behavior at high surfactant concentrations. Also, the estimated yield stresses show fairly good agreement with the experimental data.  相似文献   

3.
In this study, the electrorheological (ER) behavior of suspensions prepared from d50 = 2.4 lam talc powder, dispersed in insulating silicone oil (SO) medium was investigated. Sedimentation stabilities of suspensions (c = 5 wt%) prepared using these talc powder powders were determined to be 78 days. The ER activity of all the suspensions was observed to increase with increasing electric field strength, concentration and decreasing shear rate. The shear stress of talc powder suspensions increased linearly with increasing concentrations of the particles and with the applied electric field strength. Electric field viscosity of all the suspensions decreased sharply with increasing shear rate and showed a typical shear thinning non-Newtonian visco-elastic behavior. Effects of frequency on the ER activity of talc powder/SO system were also investigated.  相似文献   

4.
Poly-N-methaniline/montmorillonite (PNMA-MMT) nanocomposite particles with high dielectric constant as well as suitable conductivity were synthesized by an emulsion intercalation method and characterized by FT-IR, XRD, and TEM spectrometry, respectively. The electrorheological (ER) properties of the suspensions of PNMA-MMT particles in silicone oil (20 wt%) were investigated under DC electric fields. It was found that the shear stress of poly-N-methaniline/montmorillonite electrorheological fluid (ERF) is 6.0 kPa in 3 kV/mm (74.5 s(-1)), which is 3.6 times that of electrorheological fluid at zero field, and also much higher than that of pure poly-N-methaniline (PNMA) and montmorillonite (MMT). In the range of 10-90 degrees C, the shear stress changes slightly with the temperature. The sedimentation ratio of PNMA-MMT ERF was about 97% after 60 days. Furthermore, the dielectric constant of PNMA-MMT nanocomposite was increased 3.74 times that of PNMA and 1.99 times that of MMT at 1000 Hz, the dielectric loss tangent also increased about 1.58 times that of PNMA. It is apparent that the notable ER effect of PNMA-MMT ER fluid was attributed to the prominent dielectric property of the poly-N-methaniline/montmorillonite nanocomposite particles.  相似文献   

5.
The properties and applications of CNT have been studied extensively since Iijima discovered them in 1991[1,2]. They have exceptional mechanical properties and unique electrical property, highly chemical stability and large specific surface area. Thus far, they have widely potential applications in many fields. They can be used as reinforcing materials in composites[3], field emissions[4], hydrogen storage[5], nanoelectronic components[6], catalyst supports[7], adsorption material and so on.…  相似文献   

6.
A type of anhydrous electrorheological (ER) material of copper phthalocyanine (CuPC)-doped mesoporous TiO2 was synthesized by in situ micelle-assisted incorporation CuPC during mesoporous TiO2 synthesis. TEM, XRD and the nitrogen adsorption-desorption isotherms demonstrated that the material had mesoporous structure and an anatase framework. The ER behavior of the suspensions of CuPC-doped mesoporous TiO2 in silicone oil with the different volume fractions was investigated under an applied electric field. It is found that the suspensions showed visible electrorheological behavior which were compared with that of pure TiO2. The dopants of CuPC molecules within the mesochannel of TiO2 mesoporous sieve improved the conductivity of the particles and produced a proper conductivity of approximately 10(-7) S m(-1). Dielectric spectra of the ER fluid were measured to examine the peak of epsilon' should appear in the frequency range of 10(2)-10(5) Hz and have a large Deltaepsilon' in this frequency range. Therefore, the both properties may make a conjunct effect on electrorheological behavior.  相似文献   

7.
The electrorheological (ER) properties of dodecylbenzenesulfonic acid (DBSA) doped polyaniline suspensions in silicone oil were investigated. In contrast to chemically polymerized polyaniline in an acidic aqueous medium by oxidation polymerization, we adopted an emulsion polymerization technique in which aniline is polymerized in an emulsion of water and a nonpolar (or weakly polar) organic solvent. The effects of electric field strength and particle concentration on the ER properties of DBSA-doped polyaniline suspensions in silicone oil were then examined. Rheological measurements were also carried out using a rotational rheometer with a high-voltage generator in both controlled shear rate and shear stress modes, and the results showed that the ER properties were enhanced by increasing the particle concentration and electric field. Received: 23 August 1999 Accepted: 6 April 2000  相似文献   

8.
The electrorheological (ER) properties of poly(2-dodecyloxyaniline) (PDOA) suspensions in silicone oil were investigated. The ER behavior of such suspensions of polyaniline particles depends on the type of stabilizer and doping or dedoping level. Here we report on the ER behavior of particles of a substituted polyaniline with long alkyl pendants. Rheological measurements were carried out using a rotational rheometer with high-voltage generator in both constant shear stress and rate modes. Suspensions of the as-synthesized polyaniline particles in silicone oil showed a substantial ER response.  相似文献   

9.
稀土掺杂聚苯撑ER流体的研究   总被引:5,自引:0,他引:5  
选用CeCl4和FeCl3等对自制的对苯撑进行掺杂,将制得的高介电聚苯撑粉末加入到硅油中得到电流变体流体,测量了在电场作用下粘度和漏电流密度,以及相关的物理常数。讨论了电场强度、粒子浓度与粘度和漏电流密度的关系,粘度变化的响应速度和恢复时间,并探讨了其相关机制。  相似文献   

10.
电流变体是由高介电颗粒分散在低介电油相中组成的悬浮液,在电场作用下,其表观粘度急剧增大甚至发生固化,这种转变过程速度快(达毫秒级)而且是可逆的[1].由于这种独特的电场响应性,电流变体有广阔的工程应用前景.但电流变体在显示电流变效应的同时也表现出复杂...  相似文献   

11.
Aniline oligomers were prepared by the oxidation of aniline with p-benzoquinone in aqueous solutions of methanesulfonic acid (MSA) of various concentrations. Their molecular structures were assessed by Fourier transform infrared spectroscopy. The electrorheological (ER) behavior of their silicone oil suspensions under applied electric field has been investigated. Shear stress at a low shear rate, τ 0.9, was used as a criterion of the rigidity of internal structures created by the application of an electric field. It was established from the fitting of the dielectric spectra of the suspensions with the Havriliak–Negami model that dielectric relaxation strength, as a degree of polarization induced by an external field contributing to the enhanced ER effect, increases and relaxation time, i.e., the response of the particle to the application of the field, decreases when a higher molar concentration of MSA is used. The best values were observed for suspensions of the sample prepared in the presence of 0.5 M of MSA. This suspension creates stiff internal structures under an applied electric field strength of 2 kV mm?1 with τ 0.9 of nearly 50 Pa, which is even slightly of higher value than that obtained for standard polyaniline base ER suspension measured at the same conditions. The concentration of the MSA used in the preparation of oligomers seems to be a crucial factor influencing the conductivity, dielectric properties and, consequently, rheological behavior, and finally ER activity of their suspensions.  相似文献   

12.
稀土掺杂PMMA包裹硅铝氧烷凝胶的ER效应   总被引:3,自引:2,他引:1  
以二氧化硅微粒制备电流变液是研究者使用较多的一种方法[1] ,但由于二氧化硅的密度相对于分散相硅油来说太大 ,所以制成的电流变液稳定性较差。而用导电高分子微粒制成的电流变液则有在高电场时漏电流密度较大的问题[2 ] 。有研究者用直接聚合法在二氧化硅纳米微粒外包裹一层有机共聚物 ,生成一种微囊复合颗粒 ,可以使其相对密度减小 ,提高了电流变液的稳定性[3] 。我们以廉价水玻璃为原料制取硅铝氧烷溶胶 ,在其表面包裹聚甲基丙烯酸甲酯 (PMMA)后 ,得到PMMA包裹的硅铝氧烷凝胶具有相当的稳定性和易极化性 ,易形成较稳定的悬浮液 …  相似文献   

13.
Hollow globular clusters of titanium oxide (TiO2) nanoparticles were synthesized by a simple hydrothermal method. The prepared particles were consequently coated by in situ polymerization of conductive polymer polypyrrole (PPy) to obtain novel core–shell structured particles as a dispersed phase in electrorheological (ER) suspensions. The X-ray diffraction analysis and scanning electron microscopy provided information on particle composition and morphology. It appeared that PPy coating improved the compatibility of dispersed particles with silicone oil which results in higher sedimentation stability compared to that of mere TiO2 particles-based ER suspension. The ER properties were investigated under both steady and oscillatory shears. It was found that TiO2/PPy particles-based suspension showed higher ER activity than that of mere TiO2 hollow globular clusters. These observations were elucidated well in view of their dielectric spectra analysis; a larger dielectric loss enhancement and faster interfacial polarization were responsible for a higher ER activity of core–shell structured TiO2/PPy-based suspensions. Investigation of changes in ER properties of prepared suspensions as a function of particles concentration, viscosity of silicone oil used as a suspension medium, and electric field strength applied was also performed.  相似文献   

14.
Biocompatible chitosan particle suspensions in host oils of corn, soybean, and silicone were prepared and their electrorheological (ER) characteristics were examined under the imposition of electric fields. The effects of the weight concentration of particulate chitosan and the strength of the applied electric field on ER response in the various chitosan particle suspensions were investigated via measurements of rheological properties including flow curve, shear viscosity, and yield stress. The yield stresses of the three different chitosan–oil systems showed different values of slope in the electric field, but all data were found to fit well with our previously proposed universal scaling function.  相似文献   

15.
用插层聚合法制备了聚N 甲基苯胺 蒙脱土纳米复合材料微粒 ,通过IR、XRD及TEM对其结构进行了表征 .观察发现聚N 甲基苯胺插入蒙脱土层间后 ,蒙脱土片层间距由 0 96nm扩大至 1 34nm .将其分散在甲基硅油中 (2 0wt% )配制成无水电流变液 ,该复合材料表现出显著的协同效应 ,具有较好的电流变行为 .实验表明在电场作用下聚N 甲基苯胺 蒙脱土纳米复合材料的电流变效应比聚苯胺、蒙脱土都有显著提高 ,在 3kV mm(DC ,74 5s- 1 )时 ,剪切强度达 6 0kPa ;同时抗沉降性极好 ,静置 6 0天沉淀率小于 3% .介电性能测试表明聚N 甲基苯胺 蒙脱土纳米颗粒的介电常数和介电损耗较蒙脱土和聚N 甲基苯胺明显提高 ,电导率也达到了最佳范围 .  相似文献   

16.
A rigid-rod aromatic poly(pyridinium salt) was synthesized and doped with iodine (I2) for making anhydrous electrorheological (ER) fluids. The I2-doped particles were further processed into ones having insulating skins. Dielectric properties and current densities of the suspensions containing these particles were studied to elucidate the roles of conductivity of the dispersed phase in the ER suspension. © 1994 John Wiley & Sons, Inc.  相似文献   

17.
Ladder-like polymer poly(linear trans-quinacridine) (polyquin (2,3-b) acridine-7,14(5,12) dione, PTQA) was synthesized and identified. Anhydrous electrorheological fluid (ER fluid, ERF) with PTQA as dispersed particle and bromodiphenylmethane (BDPM) as dispersing medium were prepared; the electrorheological properties were studied. The temperature effect of PTQA suspensions was also discussed. The results showed that PTQA suspensions in BDPM performed excellent ER activity; at room temperature, the yield stress of the suspension with 30 wt.% of particles was up to 6.0 kPa (3.0 kV/mm). The shear stress increased with the rise in temperature, and the temperature effect was enhanced at higher temperature range. The differences of electrorheological properties between PTQA-based ERF and polyquin(2,3-b) acridine-12,14(5,7) dione-based ERF were attributed to the molecular structural regularity of the polymer.  相似文献   

18.
According to the chemical design, electrorheological properties of supramolecular complex from β-cyclodextrin polymer (β -CDP) were discussed. Six supramolecular complexes of β-cyclodextrin polymer with substituted salicylic acid and 3-hydroxy-2-naphthoic acid were synthesized by the solid-phase self-assembly method, and their component and structure were characterized by NMR, FT-IR, UV-vis and the fluorescence analysis. Then the electrorheological properties of their suspensions in silicone oil were investigated under DC electric fields. It was found that the yield stresses of these supramolecular complex ER fluids were 7.3–9.8 kPa at 4 kV/mm in DC electric field, which were enhanced by 34%–72% compared with that of pure β-CDP. Among them, that of β-CDP/3-hydroxy-2-naphthoic acid ER fluid was the highest. It was also found that the ER effect of supramolecular complexes can be controlled by changing different guests. When the substituted group is at phenyl ring, ER behavior can be slightly adjusted by the different substituted groups, their number as well as their position at phenyl ring. This can be proved by the measurement of dielectric properties.  相似文献   

19.
The effect of dielectric loss on the electrorheological (ER) characteristic of dielectric nanofluids under shear was studied. When nanofluids are activated by an applied electric field, it behaves like a non-Newtonian fluid under ER effect by creating the chains of nanoparticles. ER characteristics of ZnO and Al2O3 nanofluids with various nanoparticles concentration (0.1, 0.05, 0.01 wt%) were measured. For this purpose, a solenoid-based electromagnetic (EM) transmitter was used under different propagation media including air, tap water, and salt water. The result shows that all the nanofluids exhibit pseudo-plastic behavior, while the electric field causes a significant increase in viscosity in the presence of tap water, followed by salt water. Additionally, the viscosity of nanofluid shows a high dependence on particle loading. A possible mechanism was also proposed to describe the effect of dielectric properties on the ER behavior of dielectric nanofluids.  相似文献   

20.
In this study, a block copolymer of methyl methacrylate (MMA) and styrene (St) synthesized by combined ultrasonic irradiation and reverse atom transfer radical polymerization (RATRP) processes was used. PMMA-b-PSt was partially hydrolyzed and converted to a lithium salt, PMMA-b-PSt-Li, before the electrorheological (ER) measurements carried out. Average particle diameter of PMMA-b-PSt-Li polymeric salt was determined by dynamic light scattering (DLS) as 22 mum. Suspensions of PMMA-b-PSt-Li polymeric salts were prepared in silicone oil. ER properties of PMMA-b-PSt-Li/silicone oil suspensions were studied as a function of electric field strength, dispersed phase concentration, shear rate, shear stress, temperature, frequency, and polar promoter. Further dielectric properties of PMMA-b-PSt-Li ionomer were also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号