首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, Zhang, Tapia, and Dennis (Ref. 1) produced a superlinear and quadratic convergence theory for the duality gap sequence in primal-dual interior-point methods for linear programming. In this theory, a basic assumption for superlinear convergence is the convergence of the iteration sequence; and a basic assumption for quadratic convergence is nondegeneracy. Several recent research projects have either used or built on this theory under one or both of the above-mentioned assumptions. In this paper, we remove both assumptions from the Zhang-Tapia-Dennis theory.Dedicated to the Memory of Magnus R. Hestenes, 1906–1991This research was supported in part by NSF Cooperative Agreement CCR-88-09615 and was initiated while the first author was at Rice University as a Visiting Member of the Center for Research in Parallel Computation.The authors thank Yinyu Ye for constructive comments and discussions concerning this material.This author was supported in part by NSF Grant DMS-91-02761 and DOE Grant DE-FG05-91-ER25100.This author was supported in part by AFOSR Grant 89-0363, DOE Grant DE-FG05-86-ER25017, and ARO Grant 9DAAL03-90-G-0093.  相似文献   

2.
In this paper we propose a primal-dual interior-point method for large, sparse, quadratic programming problems. The method is based on a reduction presented by Gonzalez-Lima, Wei, and Wolkowicz [14] in order to solve the linear systems arising in the primal-dual methods for linear programming. The main features of this reduction is that it is well defined at the solution set and it preserves sparsity. These properties add robustness and stability to the algorithm and very accurate solutions can be obtained. We describe the method and we consider different reductions using the same framework. We discuss the relationship of our proposals and the one used in the LOQO code. We compare and study the different approaches by performing numerical experimentation using problems from the Maros and Meszaros collection. We also include a brief discussion on the meaning and effect of ill-conditioning when solving linear systems.This work was partially supported by DID-USB (GID-001).  相似文献   

3.
A new method for obtaining an initial feasible interior-point solution to a linear program is presented. This method avoids the use of a big-M, and is shown to work well on a standard set of test problems. Conditions are developed for obtaining a near-optimal solution that is feasible for an associated problem, and details of the computational testing are presented. Other issues related to obtaining and maintaining accurate feasible solutions to linear programs with an interior-point method are discussed. These issues are important to consider when solving problems that have no primal or dual interior-point feasible solutions.  相似文献   

4.
In this paper, the filter technique of Fletcher and Leyffer (1997) is used to globalize the primal-dual interior-point algorithm for nonlinear programming, avoiding the use of merit functions and the updating of penalty parameters.The new algorithm decomposes the primal-dual step obtained from the perturbed first-order necessary conditions into a normal and a tangential step, whose sizes are controlled by a trust-region type parameter. Each entry in the filter is a pair of coordinates: one resulting from feasibility and centrality, and associated with the normal step; the other resulting from optimality (complementarity and duality), and related with the tangential step.Global convergence to first-order critical points is proved for the new primal-dual interior-point filter algorithm.Mathematics Subject Classification (1991): 65K05, 90C06, 90C29, 90C30Support for this author was provided by CRPC grant CCR–9120008.Support for this author was provided by CRPC grant CCR–9120008.Support for this author was provided by Centro de Matemática da Universidade de Coimbra, by FCT under grant POCTI/35059/MAT/2000, by the European Union under grant IST-2000-26063, and by Fundaç\ ao Calouste Gulbenkian. The author would also like to thank the IBM T.J. Watson Research Center and the Institute for Mathematics and Its Applications for their local support.  相似文献   

5.
We describe an implementation of a primal—dual path following method for linear programming that solves symmetric indefinite augmented systems directly by Bunch—Parlett factorization, rather than reducing these systems to the positive definite normal equations that are solved by Cholesky factorization in many existing implementations. The augmented system approach is seen to avoid difficulties of numerical instability and inefficiency associated with free variables and with dense columns in the normal equations approach. Solving the indefinite systems does incur an extra overhead, whose median is about 40% in our tests; but the augmented system approach proves to be faster for a minority of cases in which the normal equations have relatively dense Cholesky factors. A detailed analysis shows that the augmented system factorization is reliable over a fairly large range of the parameter settings that control the tradeoff between sparsity and numerical stability.This paper is dedicated to Phil Wolfe on the occasion of his 65th birthday.This work has been supported in part by National Science Foundation grants DDM-8908818 (Fourer) and CCR-8810107 (Mehrotra), and by a grant from GTE Laboratories (Mehrotra).  相似文献   

6.
We introduce an interior-point method for symmetric optimization based on a new method for determining search directions. In order to accomplish this, we use a new equivalent algebraic transformation on the centring equation of the system which characterizes the central path. In this way, we obtain a new class of directions. We analyse a special case of this class, which leads to the new interior-point algorithm mentioned before. Another way to find the search directions is using barriers derived from kernel functions. We show that in our case the corresponding direction cannot be deduced from a usual kernel function. In spite of this fact, we prove the polynomial complexity of the proposed algorithm.  相似文献   

7.
In this work, we first study in detail the formulation of the primal-dual interior-point method for linear programming. We show that, contrary to popular belief, it cannot be viewed as a damped Newton method applied to the Karush-Kuhn-Tucker conditions for the logarithmic barrier function problem. Next, we extend the formulation to general nonlinear programming, and then validate this extension by demonstrating that this algorithm can be implemented so that it is locally and Q-quadratically convergent under only the standard Newton method assumptions. We also establish a global convergence theory for this algorithm and include promising numerical experimentation.The first two authors were supported in part by NSF Cooperative Agreement No. CCR-8809615, by Grants AFOSR 89-0363, DOE DEFG05-86ER25017, ARO 9DAAL03-90-G-0093, and the REDI Foundation. The fourth author was supported in part by NSF DMS-9102761 and DOE DE-FG02-93ER25171. The authors would like to thank Sandra Santos for painstakingly proofreading an earlier verion of this paper.  相似文献   

8.
This paper presents the convergence proof and complexity analysis of an interior-point framework that solves linear programming problems by dynamically selecting and adding relevant inequalities. First, we formulate a new primal–dual interior-point algorithm for solving linear programmes in non-standard form with equality and inequality constraints. The algorithm uses a primal–dual path-following predictor–corrector short-step interior-point method that starts with a reduced problem without any inequalities and selectively adds a given inequality only if it becomes active on the way to optimality. Second, we prove convergence of this algorithm to an optimal solution at which all inequalities are satisfied regardless of whether they have been added by the algorithm or not. We thus provide a theoretical foundation for similar schemes already used in practice. We also establish conditions under which the complexity of such algorithm is polynomial in the problem dimension and address remaining limitations without these conditions for possible further research.  相似文献   

9.
In this paper, we deal with primal-dual interior point methods for solving the linear programming problem. We present a short-step and a long-step path-following primal-dual method and derive polynomial-time bounds for both methods. The iteration bounds are as usual in the existing literature, namely iterations for the short-step variant andO(nL) for the long-step variant. In the analysis of both variants, we use a new proximity measure, which is closely related to the Euclidean norm of the scaled search direction vectors. The analysis of the long-step method depends strongly on the fact that the usual search directions form a descent direction for the so-called primal-dual logarithmic barrier function.This work was supported by a research grant from Shell, by the Dutch Organization for Scientific Research (NWO) Grant 611-304-028, by the Hungarian National Research Foundation Grant OTKA-2116, and by the Swiss National Foundation for Scientific Research Grant 12-26434.89.  相似文献   

10.
The layered-step interior-point algorithm was introduced by Vavasis and Ye. The algorithm accelerates the path following interior-point algorithm and its arithmetic complexity depends only on the coefficient matrixA. The main drawback of the algorithm is the use of an unknown big constant in computing the search direction and to initiate the algorithm. We propose a modified layered-step interior-point algorithm which does not use the big constant in computing the search direction. The constant is required only for initialization when a well-centered feasible solution is not available, and it is not required if an upper bound on the norm of a primal—dual optimal solution is known in advance. The complexity of the simplified algorithm is the same as that of Vavasis and Ye. © 1998 The Mathematical Programming Society, Inc. Published by Elsevier Science B.V.Research supported in part by ONR contract N00014-94-C-0007 and the Grant-in-Aid for Scientific Research (C) 08680478 and the Grant-in-Aid for Encouragement of Young Scientists (A) 08780227 of the Ministry of Science, Education and Culture of Japan. This research was partially done while S. Mizuno and T. Tsuchiya were visiting IBM Almaden Research Center in the summer of 1995.  相似文献   

11.
给出线性规划原始对偶内点算法的一个单变量指数型核函数.首先研究了这个指数型核函数的性质以及其对应的障碍函数.其次,基于这个指数型核函数,设计了求解线性规划问题的原始对偶内点算法,得到了目前小步算法最好的理论迭代界.最后,通过数值算例比较了基于指数型核函数的原始对偶内点算法和基于对数型核函数的原始对偶内点算法的计算效果.  相似文献   

12.
Recently, Todd has analyzed in detail the primal-dual affine-scaling method for linear programming, which is close to what is implemented in practice, and proved that it may take at leastn 1/3 iterations to improve the initial duality gap by a constant factor. He also showed that this lower bound holds for some polynomial variants of primal-dual interior-point methods, which restrict all iterates to certain neighborhoods of the central path. In this paper, we further extend his result to long-step primal-dual variants that restrict the iterates to a wider neighborhood. This neigh-borhood seems the least restrictive one to guarantee polynomiality for primal-dual path-following methods, and the variants are also even closer to what is implemented in practice.Research supported in part by NSF, AFOSR and ONR through NSF Grant DMS-8920550.This author is supported in part by NSF Grant DDM-9207347. Part of thiw work was done while the author was on a sabbatical leave from the University of Iowa and visiting the Cornell Theory Center, Cornell University, Ithaca, NY 14853, supported in part by the Cornell Center for Applied Mathematics and by the Advanced Computing Research Institute, a unit of the Cornell Theory Center, which receives major funding from the National Science Foundation and IBM Corporation, with additional support from New York State and members of its Corporate Research Institute.  相似文献   

13.
Recently, Ye, Tapia and Zhang (1991) demonstrated that Mizuno—Todd—Ye's predictor—corrector interior-point algorithm for linear programming maintains the O( L)-iteration complexity while exhibiting superlinear convergence of the duality gap to zero under the assumption that the iteration sequence converges, and quadratic convergence of the duality gap to zero under the assumption of nondegeneracy. In this paper we establish the quadratic convergence result without any assumption concerning the convergence of the iteration sequence or nondegeneracy. This surprising result, to our knowledge, is the first instance of a demonstration of polynomiality and superlinear (or quadratic) convergence for an interior-point algorithm which does not assume the convergence of the iteration sequence or nondegeneracy.Supported in part by NSF Grant DDM-8922636 and NSF Coop. Agr. No. CCR-8809615, the Iowa Business School Summer Grant, and the Interdisciplinary Research Grant of the University of Iowa Center for Advanced Studies.Supported in part by NSF Coop. Agr. No. CCR-8809615, AFOSR 89-0363, DOE DEFG05-86ER25017 and ARO 9DAAL03-90-G-0093.Supported in part by NSF Grant DMS-9102761 and DOE Grant DE-FG05-91ER25100.  相似文献   

14.
This work examines the generalization of a certain interior-point method, namely the method of analytic centers, to semi-infinite linear programming problems. We define an analytic center for these problems and an appropriate norm to examine Newton's method for computing this center. A simple algorithm of order zero is constructed and a convergence proof for that algorithm is given. Finally, we describe a more practical implementation of a predictor-corrector method and give some numerical results. In particular we concentrate on practical integration rules that take care of the specific structure of the integrals.  相似文献   

15.
We extend the Mizuno-Todd-Ye predictor-corrector algorithm for solving monotone linear complementarity problems. We prove that the extended algorithm is globally Q-linearly convergent and solves problems with integer data of bitlengthL in at most iterations. We also prove that the duality gap converges to zero Q-superlinearly for problems having strictly complementary solutions. Our results generalize the results obtained by Ye, Tapia, and Zhang for linear programming.  相似文献   

16.
Based on a similar kernel function, we present an infeasible version of the interior-point algorithm for linear optimization introduced by Wang et al. (2016). The property of exponential convexity is still important to simplify the analysis of the algorithm. The iteration bound coincides with the currently best iteration bound for infeasible interior-point algorithms.  相似文献   

17.
The Helmberg-Rendl-Vanderbei-Wolkowicz/Kojima-Shindoh-Hara/Monteiro and Nesterov-Todd search directions have been used in many primal-dual interior-point methods for semidefinite programs. This paper proposes an efficient method for computing the two directions when the semidefinite program to be solved is large scale and sparse.  相似文献   

18.
In the predictor-corrector method of Mizuno, Todd and Ye [1], the duality gap is reduced only at the predictor step and is kept unchanged during the corrector step. In this paper, we modify the corrector step so that the duality gap is reduced by a constant fraction, while the predictor step remains unchanged. It is shown that this modified predictor-corrector method retains the iteration complexity as well as the local quadratic convergence property.  相似文献   

19.
One perceived deficiency of interior-point methods in comparison to active set methods is their inability to efficiently re-optimize by solving closely related problems after a warmstart. In this paper, we investigate the use of a primal–dual penalty approach to overcome this problem. We prove exactness and convergence and show encouraging numerical results on a set of linear and mixed integer programming problems. Research of the first author is sponsored by ONR grant N00014-04-1-0145. Research of the second author is supported by NSF grant DMS-0107450.  相似文献   

20.
We develop an interior-point polynomial-time algorithm for a generalized linear-fractional problem. The latter problem can be regarded as a nonpolyhedral extension of the usual linear-fractional programming; typical example (which is of interest for control theory) is the minimization of the generalized eigenvalue of a pair of symmetric matrices linearly depending on the decision variables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号