首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relation between the mechanical properties and the microstructure of PET has been investigated, combining results from WAXS, SAXS, FTIR, DSC, and uniaxial compression tests. The rigid amorphous fraction in the PET was explicitly taken into consideration in interpreting structure–property relations. WAXS results prove that glass crystallized PET with a high volume fraction of rigid amorphous material and small crystal size, on uniaxial compression shows a considerable loss in crystalline fraction. FTIR results in combination with these WAXS results suggest that during this loss in crystallinity, short-range conformational order is retained, while long-range structural order is lost. At the same time, material with small crystals and a high amount of rigid amorphous material was found to show unexpectedly low yield stress. It is concluded that in the interpretation of these phenomena it is necessary to take the three-phase structure of PET, including the rigid amorphous fraction into account. This is expected to hold for other semicrystalline polymers, where a rigid amorphous fraction is prominent, such as PHB, PBT, PEN, PEEK, etc. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2092–2106, 2004  相似文献   

2.
3.
Hot‐air drawing method has been applied to poly(ethylene terephthalate) (PET) fibers in order to investigate the effect of strain rate on their microstructure and mechanical properties and produce high‐performance PET fibers. The hot‐air drawing was carried out by blowing hot air controlled at a constant temperature against an as‐spun PET fiber connected to a weight. As the hot air blew against the fibers weighted variously at a flow rate of about 90 ℓ/min, the fibers elongated instantaneously at a strain rate in the range of 2.3–18.7 s−1. The strain rate in the hot‐air drawing increased with increasing drawing temperature and applied tension. When the hot‐air drawing was carried out at a drawing temperature of 220°C under an applied tension of 27.6 MPa, the strain rate was the highest value of 18.7 s−1. A draw ratio, birefringence, crystallite orientation factor, and mechanical properties increased as the strain rate increased. The fiber drawn at the highest stain rate had a birefringence of 0.231, degree of crystallinity of 44%, tensile modulus of 18 GPa, and dynamic storage modulus of 19 GPa at 25°C. The mechanical properties of fiber obtained had almost the same values as those of the zone‐annealed PET fiber reported previously. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1703–1713, 1999  相似文献   

4.
The effect of drawing and annealing treatments on the transition in poly(ethylene terephthalate), PET, yarns has been studied using a combination of X-ray and dynamic mechanical techniques. It was found that drawn, crystalline PET yarns exhibit a shift in the position of the transition to lower temperatures for high annealing temperatures; this effect has been observed for unoriented, crystalline PET. The main difference between the results for the drawn and unoriented yarns lies in the position of the transition on the temperature scale; the transition occurs at higher temperatures the higher the draw ratio. The shift in the position of the transition with anealing is interpreted in terms of the number of crystals whilst the change in position of the transition brought about by drawing is explained by orientation in the amorphous regions.
Zusammenfassung Der Einfluß von Verstreckung und Temperaturbehandlung auf den -Übergang in Poly(äthylenterephthalat), PET, Garn wurde untersucht unter Anwendung von Röntgen- und dynamisch-mechanischen Methoden. Es wurde gefunden, daß für hohe Vergütungstemperaturen verstreckte, kristalline PET-Garne eine Verschiebung des -Überganges zu niedrigeren Temperaturen aufweisen, ähnlich wie für nicht verstrecktes, kristallines PET. Der Hauptunterschied zwischen verstreckten und nicht verstreckten Garnen ist die Lage des -Überganges auf der Temperaturskala; der -Übergang liegt für höhere Verstreckung bei höheren Temperaturen. Die Verlagerung des -Überganges durch Temperaturbehandlung wird auf die Anzahl der Kristallite zurückgeführt, während seine Verschiebung durch Verstreckung erklärt wird durch die Orientierung in den amorphen Bezirken.


With 4 figures and 1 table  相似文献   

5.
6.
7.
Modification of the threadline dynamics has effected significant alternations in the structure and improvements in the properties of high-speed melt spun poly(ethylene terephthalate) (PET) fibers. Key process parameters extant in the threadline dynamics, such as temperature, tensile stress, and deformation time, were independently controlled through proper implementation of on-line perturbations. The placement of a liquid isothermal bath in close proximity to the spinneret in the melt spinning threadline provided tremendous increase in the spinning stress while at the same time controlled the filament temperature corresponding to development of the desired fiber structure. Characterization of the fiber structure and physical properties has been carried out using birefringence measurements, density, shrinkage, x-ray diffraction, DSC, FTIR spectroscopy, and tensile tests. The results provided sufficient evidence to support the existence of a unique crystalline morphology that led to the significantly improved tensile properties and excellent dimensional stability of the resulting fibers. This unique crystalline morphology was typically characterized by the presence of a larger amount of extended chain segments and an enhanced molecular connectivity. ©1995 John Wiley & Sons, Inc.  相似文献   

8.
The accelerated ultraviolet aging behavior of poly(1,3,4-oxadiazole) fibers (POD fibers) exposed to artificial environment for different durations were studied. The influence of ultraviolet light on the intrinsic viscosity, structure, appearance and morphology, mechanical properties of POD fibers were investigated during aging by ATR-FTIR and UV-spectra, XPS, WXRD, SEM and tensile strength tester. The results revealed that the structure and properties of POD fibers were affected by UV light. Tensile strength and breaking elongation of POD fibers were severely decreased after 48 h UV light irradiation, and the change of intrinsic viscosity indicated that only degradation but not crosslink occurred. Disruption of oxadiazole rings and formation of carbonyl and amide were observed. UV aging process in nitrogen atmosphere suggested that the oxygen was indispensable and the essence of POD UV aging was photo-oxidation process. POD was amorphous and the recrystallization on surface was present after UV aging due to degradation. Morphology of POD fiber surface was damaged after UV aging.  相似文献   

9.
The structure, mechanical properties, and thermomechanical properties of poly(ethylene terephthalate) (PET) fibers obtained by laser-heated drawing were investigated in terms of their dependence on the draw ratio and feed speed and the differences between neck-drawn fibers and flow-drawn fibers. The long period at a draw ratio of 6.0 reached 19.0 nm, notably larger than at lower ratios, whereas the tilting angle of the laminar structure was constant at about 60°, regardless of the draw ratio. A maximum value of 15.0 GPa was attained for the initial modulus, and 1.07 GPa was attained for the tensile strength. A higher tensile strength orientation-induced crystallized fiber at the same initial modulus was obtained from higher molecular weight PET. The relationship between the compliance and molecular orientation of the amorphous phase was studied with a series model of crystalline and amorphous phases. The results revealed that, in the high-draw-ratio fibers, the compliance of the amorphous phase decreased with the draw ratio at a higher rate than indicated by extrapolation to intrinsic values. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 79–90, 2004  相似文献   

10.
The unit cell of poly(tetramethylene terephthalate) is triclinic with parameters a = 5.96 Å, b = 4.83 Å, c (fiber axis) = 11.62 Å, α = 115.2. β = 99.9, and γ = 111.3°; space group P1 , calculated crystalline density 1.41 g/cc. The plane of the benzene ring is found to be inclined by about 15° from the fiber axis, contributing to a shortening of the fiber period as compared to the period expected on the basis of analogy with other members of the terephthalate ester series. The remaining shortening of the fiber period occurs in the ? O? °CH2? °CH2? segment of the chain. No abnormally short distances among neighboring chain atoms were observed. A typical texture pattern was found in specimens of this polymer that were cold rolled and subsequently annealed. In this texture the c axis of the unit cell is highly oriented in the rolling direction; the a and b axes of the unit cell are oriented preferentially so that the terephthalate residue lies as close as possible to the plane of rolling.  相似文献   

11.
12.
The mechanical properties of poly(ethylene terephthalate) are examined to see if the quantitative morphological criteria previously used to define the structural state of isotactic polypropylene will lead to similar quantitative structure-property correlations when applied to PET. Tenacity, thermal shrinkage in oil and air, tensile modulus, dynamic loss modulus, long spacings, and small-angle x-ray intensities are included in the study. All of the data were obtained from the open literature. In all cases the physical properties correlate simply and quantitatively with the internal structure of the PET, and the character of the correlations leads to new insights into the nature of the internal mechanisms controlling the observed properties. The study shows that only by considering the structural state of a polymer, and not its fabrication parameters, can general, simplifying, quantitative, structure-property correlations be achieved.  相似文献   

13.
The concept of the drawing of a molecular network has been employed to derive a total network draw ratio from the combination of the two deformations occurring in the production of poly(butylene terephthalate), PBT, fibers by the consecutive processes of melt spinning and cold drawing. The mechanical properties of PBT can then be more readily explained in terms of increases in this total network draw ratio. However, the preorientation and crystallization that occurs in the melt-spinning process can occur at different strain rates and temperatures, depending on the wind up speed employed, on the extensional viscosity of the polymer, and on the variation of the extensional viscosity with temperature. Therefore, for polymers such as poly(butylene terephthalate), which can exist in two crystalline forms, the morphology of the final drawn fiber might be expected to depend on the first melt-spinning stage of the process as well as on the total network draw ratio. In this work, density, birefringence, mechanical measurements, and WAXD measurements, which have been made on the melt-spun fibers and on the drawn fibers, are described. Small differences in some of the drawn yarn mechanical properties at the same overall network draw ratio are related to the crystallinity and in particular to differences in the proportion of the α and β phases present in the drawn yarn. These in turn are related to differences in the temperature and stress during melt spinning and drawing. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 2465–2481, 1997  相似文献   

14.
The mechanical properties of poly(ethylene terephthalate) (PET) fibers at temperatures above the glass transition are investigated by means of a specially constructed device. Measurements of the deformation rate and of the “dynamic” stress-strain curves of the fibers are performed in nearly isothermal regime (after initial rapid heating) in a temperature interval 100–200°C. The results reported in the present work demonstrate that the high-temperature mechanical characteristics of rapidly crystallizing polymers can be deduced to a satisfactory precision, while keeping the crystallinity development at low level. Our investigations indicate that if the high-temperature deformation is sufficiently fast, the polymer behavior is similar to the deformation at sub-Tg temperatures. Based on this similarity, a qualitative model of the deformation in the high-temperature region is proposed. The proposed model is fundamentally equivalent to the models describing mechanical deformation of glassy polymers at temperatures below the glass transition. ©1995 John Wiley & Sons, Inc.  相似文献   

15.
Fibrous blends of polyethylene terephthalate (PET) and polylactic acid (PLA) were fabricated by electrospinning (ES) from a common solvent, at concentrations of PET/PLA = 100/0, 70/30, 50/50, 30/70, and 0/100. Oriented fiber mats were studied either as-spun, or after a cold-crystallization treatment. Scanning electron microscopy of as-spun amorphous fibers showed that addition of PLA into the ES solution prevents occurrence of beads. In some compositions, two glass transitions were observed by temperature-modulated differential scanning calorimetry indicating that the two components in the ES fibers were phase separated. Thermogravimetric analysis was used to study thermal degradation at high temperatures. PLA degrades at a temperature about 100 °C lower than that of PET, and holding or cycling the blends to high temperature can result in the degradation of PLA. Degree of crystallinity was determined using DSC for as-spun and cold-crystallized ES blend fibers. The degree of crystallinity of each blend component is reduced by the presence of the other blend component, and the overall crystallinity of the blend fibers is less than that of the homopolymer fibers. Wide-angle X-ray scattering results show that oriented crystals were formed in the blended electrospun fibers collected on a rotating collector. The cold-crystallization process leads to both PET and PLA crystallizations. Oriented crystallites form even when the fiber is crystallized with its ends free to shrink.  相似文献   

16.
This paper presents a procedure for simulating the anisotropic small-strain mechanical properties of oriented amorphous poly(ethylene terephthalate) (PET) starting from an atomistic level. A technique for producing oriented amorphous simulation cells of glassy PET has been developed and closely examined against related structural and property measurement data. The simulated elastic constants of these cells, derived by energy minimisation and molecular dynamics strain fluctuation methods, show encouraging agreement with experimental data.  相似文献   

17.
Poly(ethylene terephthalate) (PET) films have been exposed to ultraviolet radiation. Changes in physico-chemical, mechanical and electrical properties which occur in the films were examined. It was found that the specific viscosity, tensile strength, elongation at break, relative dielectric constant and dielectric strength decrease, while the dielectric loss factor, density, optical density of the ir spectrum band which refers to the trans form of the PET molecule, as well as the quantity of carboxylic end groups, increase.Least squares analysis and function straightening methods were used for the interpretation of the experimental data. Correlating relationships between measured parameters were established using the same methods.Special attention was paid to the changes in the electrical properties of poly(ethylene terephthalate), because no data are available so far. Mathematical correlations with chemical and mechanical properties were established.  相似文献   

18.
This study presents a novel photothermal drawing of poly(ethylene terephthalate) (PET)/multiwalled carbon nanotube (MWCNT) fibers. The photothermal drawing was carried out using the near infrared laser‐induced photothermal properties of MWCNTs. An uniform fiber surface was obtained from a continuous necking deformation of the undrawn fibers, particularly at a draw ratio of 4 and higher. The breaking stress and modulus of the photothermally drawn PET/MWCNT fibers were significantly enhanced, in comparison to those of hot drawn fibers at the same draw ratio. The enhanced mechanical properties were ascribed to the increased orientation of PET chains and MWCNTs as well as PET crystallinity due to photothermal drawing. In particular, a significantly higher degree of orientation of the MWCNTs along the fiber axis was obtained from photothermal drawing, as shown in polarized Raman spectra measurements. The photothermal drawing in this study has the potential to enhance the mechanical properties of fibers containing MWCNTs. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 603–609  相似文献   

19.
20.
The effect of electron-beam irradiation on the surface properties and the parameters of the semicrystalline structure of biaxially oriented poly(ethylene terephthalate) (PET) films was studied. It was shown that the crystallinity and the surface tension of the irradiated films at the interfaces with isooctane and water vary in a nonmonotonic manner over the dose range D= 25–300 kGy. As the absorbed dose increases, the dispersion and polar terms of surface energy increase, exhibiting an extremum as a result of the competing chain crystallization and amorphous-phase formation processes, as well as oxidative degradation and crosslinking of PET samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号