共查询到19条相似文献,搜索用时 218 毫秒
1.
硅(Si)具有极高的理论容量、 较低的电压平台和丰富的自然资源, 有成为下一代高能量密度锂离子电池负极材料的潜力. 但Si不同于石墨, 其固有电导率低, 循环过程中体积变化巨大, 不宜直接作为负极材料. 因此出现了许多从维度结构、 复合材料、 黏结剂和电解质等方面改善或适配Si基负极材料的改性方案, 以使其满足商业化的要求. 本文综合评述了近年Si基负极材料的研究进展, 总结了不同方面的设计要素, 介绍了代表性材料的性能表现, 最后, 对目前Si基材料面临的问题进行了简要分析, 并展望了其作为锂离子电池负极的研究前景. 相似文献
2.
硅基负极材料具有最高的储锂容量和较低的电压平台,是最具潜力的下一代锂离子电池负极材料之一.然而,硅负极巨大的体积效应、较低的电导率以及与常规电解液的不相容性限制了其商业化应用.目前,提高硅负极性能的措施主要包括:通过设计硅基负极材料的组成和微观结构来抑制其体积变化并改善导电性,研发适于硅负极的粘结剂和电解液添加剂,探索... 相似文献
3.
硅(Si)由于其具有超高理论比容量而成为最有前途的下一代锂离子电池的负极材料。但是,锂离子的嵌入和脱出会造成硅体积的巨大变化,进而导致Si的粉化,致使电极容量产生不可逆的衰减,严重限制了硅基材料的广泛应用。然而过去的大量报道表明,聚合物粘结剂可以有效克服由于硅微粒的体积膨胀而产生的“孤岛效应”,保持电极在充放电过程的完整性,进而提高电极的电化学性能。对聚合物粘结剂按结构分类,可以将其大致分为4类,即线型、支化型、交联网络型及共轭型。不同分子结构的粘结剂用作硅基负极粘结剂时,电极表现出不同的电化学性能。特别是设计出具有多种分子结构的聚合物粘结剂,极大地促进了硅基负极的实际应用。通过对比具有不同分子结构的聚合物粘结剂用于硅基负极取得的效果,可以清晰地得到最有效的分子结构,对未来硅基负极聚合物粘结剂的开发提供思路。最后,本文提出了下一代聚合物粘结剂的设计方向,以促进其向可大规模应用和工业化生产的方向发展。 相似文献
4.
5.
锂离子电池硅基负极粘结剂发展现状 总被引:2,自引:0,他引:2
在锂离子电池负极材料的研究中,硅材料以其高达4200 mAh·g-1的理论比容量,成为近年来新能源电池领域的研究热点.但是在锂化/去锂化过程中,硅负极体积变化高达300%,导致快速的容量衰减和较短的循环寿命.目前硅负极改性最有效的方法之一,是通过粘结剂来保持活性物质、导电添加剂和集流体间的接触完整性,减少硅材料在充放电循环过程中体积变化引起的裂化和粉碎,保持硅负极的高容量,提升电池循环性能.基于硅材料作为锂离子电池负极的优异特性,以及目前锂离子电池粘结剂的发展,将针对锂离子电池硅基负极粘结剂做出系统讨论,描述不同粘结剂对电池性能的主要影响,为锂离子电池硅基负极粘结剂的开发和应用提供研究方向. 相似文献
6.
硅基负极材料是提升锂离子电池能量密度的重要材料基础,负极粘结剂性能的优劣是影响硅基负极材料推广应用的关键因素。本文全面综述了锂离子电池负极粘结剂材料的研究及应用进展,详细阐述了粘结剂对于硅基负极材料及锂离子电池电化学性能的影响,简要介绍了目前常用的羧甲基纤维素(CMC)、聚丙烯酸(PAA)、海藻酸盐(Alg)三种硅基负极粘结剂的特点,重点讨论了聚酰亚胺(PI)材料作为负极粘结剂的优势,其分子结构可设计、形变可逆、高强高模等优点有望抑制硅基负极体积膨胀并避免颗粒粉化,系统综述了目前PI在硅基负极粘结剂中的研究进展。在此基础上,为PI粘结剂后续研究提供了新的方法策略,为锂离子电池负极粘结剂的开发和应用提供了新的设计理念。 相似文献
7.
硅是目前已知比容量(4200 mAh ·g-1)最高的锂离子电池负极材料,但由于其巨大的体积效应(> 300%),硅电极材料在充放电过程中会粉化而从集流体上剥落,使得活性物质与活性物质、活性物质与集流体之间失去电接触,同时不断形成新的固相电解质层(SEI),最终导致电化学性能的恶化。本文介绍了硅作为锂离子电池负极材料的储能及容量衰减机理,总结了通过硅材料的选择和结构设计来解决充放电过程中巨大体积效应的相关工作,并讨论了一些具有代表性的硅基复合材料的制备方法、电化学性能和相应机理,重点介绍了硅炭复合材料。另外,介绍了一些电极的处理方法和其提高硅基负极材料电化学性能的可能机理。最后,对硅基负极材料存在的问题进行了分析,并展望了其研究前景。 相似文献
8.
Si基负极材料具有比容量高和嵌锂电势低等优点,已成为提高锂离子电池能量密度的关键材料.但其巨大的体积膨胀和与电解液间的副反应造成了严重的界面问题.本文从硅负极界面的定义出发,对界面问题、成因和形成机制进行了综合评述;并分别从结构优化、人工界面构筑、电解液配方优化和固态电池中的界面问题4个方面阐述了硅基负极界面工程的发展现状;最后,对硅基负极界面问题的解决方案进行了总结与展望. 相似文献
9.
硅是已知质量比容量最高的锂离子电池负极材料,研究人员希望通过制造可靠的高容量硅负极,生产高能量密度的锂离子电池. 但由于充放电过程中锂在硅材料中嵌入与释放,硅材料发生巨大的体积变化,以致破碎,并从负极上脱落下来. 硅负极容量随着充放循环次数的增加而迅速下降,是其应用进程中受到的最大制约. 本文结合锂离子电池硅负极研究现状,从硅材料本体结构、整体负极结构两方面介绍几种不同的提高硅负极循环稳定性的方法,并对各种方法的稳定性、成本、制备方法等进行比较,提出对未来硅负极材料研究的展望. 相似文献
10.
11.
硅/石墨复合物用作锂离子电池负极材料 总被引:1,自引:0,他引:1
以石墨和纳米硅粉为原料, 利用机械球磨的方法制备了硅/石墨复合物, 用作锂离子电池负极材料. 采用XRD, SEM以及电化学测试等手段对材料进行了结构表征和性能测试. 通过球磨不同质量比的硅和石墨, 并对相应的复合物进行充放电测试, 寻找到了硅和石墨的最佳比例, 其值为1∶9. 实验结果表明, 所得材料既具备高于纯纳米硅的循环性能, 又具有比石墨高的可逆容量. 相似文献
12.
13.
锂离子电池在高电压下会导致严重的电解液分解以及不稳定的正极与电解质界面问题,严重制约高电压正极材料的商业化.粘结剂不仅可以将正极活性材料和导电炭紧密粘结在集流体上,还对构建电解质与正极之间的多尺度相容性界面起积极作用,因此,粘结剂的优化可以有效解决上述难题.本文提出了高电压锂离子电池正极粘结剂需具备的必要条件,如:粘结性能和机械性能优异,具有出色的电化学稳定性和热力学稳定性以及良好的离子和电子传输能力等.综述了近些年来高电压正极粘结剂的研究及发展现状,通过天然粘结剂和合成粘结剂对目前已报道的高电压粘结剂进行了评述,介绍了各种粘结剂对电极的粘结性能和包覆以及对锂离子电池性能的影响机制,重点阐述了粘结剂分子结构中的极性基团与活性物质间的相互作用,如氢键和离子-偶极相互作用,并讨论了设计开发高电压正极粘结剂的途径以及展望了高电压正极粘结剂的发展前景. 相似文献
14.
Shah Rahim Alam Naveed A. Razzaq Amir Cheng YANG Yujie CHEN Jiapeng HU Xiaohui ZHAO Yang PENG Zhao DENG 《物理化学学报》2019,35(12):1382-1390
As an important component in electrodes, the choice of an appropriate binder is significant when fabricating lithium-ion batteries (LIBs) with good cycle stability and rate capability, which are used in numerous applications, especially portable electronics and eco-friendly electric vehicles (EVs). Semi-crystalline poly(vinylidene fluoride) (PVDF), which is a traditional and widely used binder, cannot efficiently accommodate the volume changes observed in the anode during the charge-discharge process while binding all the components in the electrode together, which results in increased internal cell resistance, detachment of the electrode components, and capacity fading. Herein, we have investigated a highly polar and elastomeric polyacrylonitrile-butadiene (NBR) rubber for use as a binder in LIBs, which can accommodate graphite particles of different shapes compared to semi-crystalline PVDF. Prior to our electrochemical tests, NBR was analyzed using thermogravimetric analysis (TGA) and X-ray diffraction (XRD), showing good thermal stability and an amorphous morphology. NBR is more conformable to irregular surfaces, which results in the formation of a homogeneous passivation layer on both spherical and flaky graphite particles to effectively suppress any electrolyte side reactions, further allowing more uniform and fast Li ion diffusion at the electrolyte/electrolyte interface. As a result, the electrochemical performance of both spherical and flaky shape graphite electrodes was significantly improved in terms of their first cycle Coulombic efficiency (CE) and cycle stability. With comparative specific capacity, the first cycle CE of the NBR-based spherical and flaky graphite electrodes were 87.0% and 85.5%, compared to 85.3% and 82.6% observed for their corresponding PVDF-based electrodes, respectively. After 1000 discharge-charge cycles at 1C, the capacity retention of the NBR-based graphite electrodes was significantly higher than that of PVDF-based electrodes. This was attributed to the good stability of the solid electrolyte interphase (SEI) formed on the graphite electrodes and the high stretching ability of the elastomeric NBR binder, which help to accommodate the repeated volume fluctuation of graphite observed during long-term charge-discharge cycling. Electrochemical impedance spectroscopy (EIS) and microscopic analysis (SEM and TEM) were carried out to investigate the formation and evolution of the SEI layers formed on the spherical and flaky graphite electrodes. The results show that thin, homogeneous, and stable SEI layers are formed on the surface of both spherical and flaky graphite electrodes prepared using the NBR binder. When compared to the PVDF-based graphite electrodes, the graphite electrodes constructed using NBR showed decreased resistance in the SEI layer and faster charge transfer, thus enhancing the electrode kinetics for Li ion intercalation/deintercalation. Our study shows that the electrochemical performance of spherical and flaky graphite electrodes prepared using the NBR binder is significantly improved, demonstrating that NBR is a promising binder for these electrodes in LIBs. 相似文献
15.
氧化亚硅(SiO)作为锂离子电池负极材料,具有较高的理论比容量(~2043 mAh·g-1)以及合适的脱锂电位(< 0.5 V),且原料储量丰富、制备成本较低、对环境友好,被认为是下一代高能量密度锂离子电池负极极具潜力的候选材料。然而,SiO在脱/嵌锂过程中存在着较严重的体积效应(~200%),易导致材料颗粒粉化、脱落,严重影响了SiO负极电极的界面稳定性和电化学性能。近年来,人们围绕SiO负极结构优化和界面改性开展了大量工作。本文先从SiO负极材料的结构特点出发,阐述了该材料面临的主要瓶颈问题;继而从SiO的结构优化、SiO/碳复合和SiO/金属复合等三方面,系统总结了迄今已有的SiO负极结构设计和界面调控策略,并分别对其方法特点、电化学性能以及二者间关联规律进行了比较和归纳,最后对SiO负极材料结构和界面改性的未来发展方向进行了展望。 相似文献
16.
17.
锌离子二次电池具有优异的充放电性能、高功率密度和能量密度、低成本、高安全性和环境友好的特点,极具发展前景。金属锌,因优异的导电性、低的平衡电势、高的理论比容量和低成本等因素,是水系二次电池中理想的负极材料,然而也存在着枝晶生长、腐蚀和钝化等问题,限制了锌离子二次电池的可逆容量和循环寿命,通过优化调节锌负极的形貌与表面修饰等方法可以提高电池性能。本文综述了水系锌离子二次电池负极材料的研究进展,涵盖了金属锌负极、复合锌负极和锌合金,且展望了锌负极的发展前景。 相似文献
18.