首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
采用模板法合成了Co9S8@Ti3C2复合材料,通过SEM和XRD研究了复合材料的形貌结构。以不同Co9S8负载量的复合材料以及纯相的Co9S8作为正极,以纯镁为负极,苯酚氯化镁-氯化铝/四氢呋喃作为电解液,组装镁离子电池进行测试比较。结果表明,与Ti3C2的复合能够明显缩短电池的活化时间,并且显著提高其电化学性能,Co9S8@Ti3C2-2在100 mA/g的电流密度下循环100次后,放电比容量上升到233 mAh/g。此外,在1 000 mA/g的电流密度下,仍然能够实现69 mAh/g的放电比容量。  相似文献   

2.
采用金属硝酸盐为金属源, NaOH和Na2CO3为沉淀剂, 利用共沉淀法制备了La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3高熵氧化物负极材料, 研究了粉体的微观结构和电化学性能, 并与传统的LaCoO3的电化学性能进行了比较. 通过扫描电子显微镜(SEM)、 X射线衍射(XRD)和N2吸附-脱附测试对其进行了表征, 结果表明, 所制备的 La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3高熵氧化物为钙钛矿结构, 形貌为球状, 且各组成元素分布均匀, 比表面积(19.83 m2/g)较高. 储锂性能研究表明, La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3高熵氧化物负极材料具有较高比容量、 优异的倍率性能和循环稳定性, 在200 mA/g的电流密度下, 其首次放电比容量为855.8 mA·h/g, 循环150次后, 比容量增加到771.8 mA·h/g, 远高于理论比容量(331.6 mA·h/g); 在3000 mA/g的高电流密度下循环500次后, 其仍能保持320 mA·h/g的可逆比容量, 接近其理论比容量, 容量保持率高达95.1%. La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3高熵氧化物储锂性能的大幅度提高, 主要归因于熵稳定的晶体结构和多主元协同效应, 使其具有较大的锂离子扩散系数(11.2×10-18 cm2/s)和较高的赝电容贡献.  相似文献   

3.
杜柯  周伟瑛  胡国荣  彭忠东  蒋庆来 《化学学报》2010,68(14):1391-1398
以LiOH•H2O, Ni2O3, Co3O4和MnO2为原料, 经过机械活化后在空气气氛下经高温烧结, 合成了锂离子电池正极材料Li[Li0.2Mn0.54Ni0.13Co0.13]O2. 通过X射线衍射(XRD)、扫描电子显微镜(SEM)和电化学性能测试对所得样品的结构、形貌及电化学性能进行了表征. 结果表明, 900 ℃下烧结10 h后可获得晶粒细小均匀的层状Li[Li0.2Mn0.54Ni0.13Co0.13]O2材料, 并具有良好的电化学性能, 在室温下以60 mA/g的电流充放电, 首次放电比容量可达到248.2 mAh/g, 循环50次后放电比容量为239.4 mAh/g, 容量保持率为96.45%. 测试了该材料的高低温循环性能.  相似文献   

4.
首先,将葡萄糖和尿素按1∶1的质量比进行混合,作为多孔造孔剂,以水热法和煅烧法制备多孔结构的前驱体Fe2O3。随后,通过碳热还原的方法在制备碳包覆核壳结构的同时将Fe2O3还原成Fe3O4。最后,通过溶剂热法使用还原氧化石墨烯(rGO)对核壳多孔Fe3O4(CP-Fe3O4@C)进行封装,形成三维层状复合材料,记为rGO-CP-Fe3O4@C。具有三维网络传输结构的rGO-CP-Fe3O4@C在0.3 A·g-1的电流密度下循环200圈之后的比容量为839 mAh·g-1。值得关注的是,rGO-CP-Fe3O4@C在6 A·g-1的大电流密度下充放电的比容量能够达到165 m...  相似文献   

5.
在NH3辅助下将制备的V2O5空心球高温还原为V2O3空心球, 并利用透射电子显微镜、 扫描电子显微镜、 X射线衍射和X射线光电子能谱等手段对材料的形貌与结构进行表征. 将V2O3空心球与硫机械混合后, 不经过熔融复合直接作为锂硫电池的正极材料. 电化学测试结果显示, 在0.2C倍率下, 电池首次放电比容量达到1375 mA·h/g, 循环100次后放电比容量可以维持在815 mA·h/g; 在1C高倍率下, 电池首次放电比容量为710 mA·h/g, 经过500次循环后, 放电比容量仍能达到530 mA·h/g, 表明V2O3空心球的加入能够有效提高锂硫电池的循环性能.  相似文献   

6.
锰基氧化物作为锌离子电池正极具有高比容量和低成本等优点, 但在电化学循环过程中不可逆相变、 锰的溶解和电极/电解质界面不稳定导致其在小电流密度、 深度放电条件下的循环性能差. 针对以上问题, 合成了三维(3D)多孔MnOx立方盒子, 并在其表面包覆In2O3层, 获得3D多孔MnOx@In2O3立方盒子. 结果显示, MnOx@In2O3立方盒子具有大量孔径约10 nm左右的孔, 有利于H+和Zn2+的快速传输; In2O3包覆层均匀包覆于3D多孔MnOx立方盒子的孔壁上, 有利于抑制MnOx在电化学循环过程中的不可逆相变和锰的溶解, 稳定电极/电解质界面. 电化学测试结果表明, 该3D多孔MnOx@In2O3电极在0.3 A/g的小电流密度、 深度放电条件下能稳定循环400次以上, 容量保持260 mA·h/g; 在1. 8 A/g电流密度下可稳定循环4000次以上, 容量保持81 mA·h/g; 即使在高电流密度6.0 A/g下仍保持73.4 mA·h/g的高可逆容量. 恒电流间隙滴定(GITT)和循环伏安测试结果表明, 3D多孔MnOx@In2O3电极比3D多孔MnOx具有更高的离子扩散速率, 有利于提升其高倍率容量. 电化学阻抗谱结果表明, 3D多孔MnOx@In2O3电极具有比3D多孔MnOx更稳定的电极/电解质界面, 有利于提升其循环寿命. 2000次循环后的扫描电子显微镜(SEM)结果表明, MnOx@In2O3电极表面仍分布少量In2O3, 以确保电极/电解质界面和循环的稳定性.  相似文献   

7.
采用葡萄糖水热碳化法合成了一系列碳层包覆的NiFe2O4核壳八面体(NiFe2O4@C). 通过调控葡萄糖的含量可以有效控制NiFe2O4表面包覆的碳层厚度. 利用X射线衍射(XRD)、 拉曼光谱(Roman)、 X射线光电子能谱(XPS)、 扫描电子显微镜(SEM)、 透射电子显微镜(TEM)和紫外-可见漫反射光谱(UV-Vis DRS)等对NiFe2O4@C的组成、 结构、 形貌和光学性能进行了表征. 考察了表面水热碳层对NiFe2O4光催化降解亚甲基蓝(MB)性能的影响. 结果表明, NiFe2O4的光催化活性很大程度上依赖于在其表面包覆的碳层厚度, 碳层厚度为5.5 nm的NiFe2O4@C-3展现了最佳的光催化活性. 荧光光谱(PL)、 瞬态光电流和电化学阻抗谱(EIS)表征结果证明, NiFe2O4@C的光催化性能的提升归因于在NiFe2O4核和碳壳之间形成了异质结, 有效地促进了光生载流子的传输和分离效率. NiFe2O4@C复合材料展现了较好的稳定性和可回收性, 在污水处理方面有很大的应用潜力.  相似文献   

8.
利用物理浸渍和冷冻干燥等方法制备了具有三维网状结构的Ru/石墨烯/碳纳米管复合材料, 对该材料的结构、 形貌及电化学性能进行了表征和研究. 结果表明, 当Ru含量为30%, 热处理温度为500 ℃时, 材料的催化性能最优. 将其用作锂氧电池的正极催化剂, 以50 mA/g电流密度进行首次充放电时, 放电比容量约为5800 mA·h/g, 且在放电比容量为4000 mA·h/g以内时, 其极化电压仅为0.9 V; 当以50 mA/g电流密度进行恒容(500 mA·h/g)充放电循环时, 在极化电压低于1.1 V时, 仍能稳定循环12周. 复合材料电催化机理的研究结果表明, 三维网状结构不仅提供了O2和Li+的传输通道, 更增加了放电产物Li2O2的储存场所. 金属钌纳米粒子的负载既增加了复合材料的反应活性位点, 又促进了放电产物Li2O2的分解.  相似文献   

9.
钠离子电池锡负极因具有较高的理论容量(847 mA·h/g)、 高电导率和合适的工作电位而备受关注. 但锡基负极材料在循环过程中会发生巨大的结构变化, 进而导致活性材料粉化失活和比容量的快速下降. 本文成功制备了基于石墨氮化碳(g-C3N4)、 聚多巴胺衍生的氮掺杂碳(NC)和Sn纳米颗粒的复合物(g-C3N4/Sn/NC), 其中Sn纳米颗粒包埋在石墨氮化碳和氮掺杂碳中. 在此多层分级结构中, g-C3N4和NC的引入可以显著加速电子/离子的传输及电池反应动力学, 从而有助于Sn和钠离子之间的合金化反应; 此外, 这种复合结构有助于保持电极材料的结构稳定性, 进而可以获得优异的储钠性能. 作为钠离子电池负极材料, g-C3N4/Sn/NC在0.5 A/g电流密度下经历100次循环, 可逆容量可以达到450.7 mA·h/g; 在1.0 A/g电流密度下, 比容量为388.3 mA·h/g; 此外, 在1.0 A/g电流密度下, 经过400次循环后其比容量依旧能达到363.3 mA·h/g.  相似文献   

10.
以P123为结构导向剂,采用溶胶-凝胶法结合冷冻干燥技术制备了0/1/2维混合纳米形貌的正交相V2O5电极活性材料.利用XRD和SEM表征了样品的结构和形貌,通过循环伏安法、恒流充放电和交流阻抗谱测试研究了样品的储锂性能.结果显示,这种0/1/2维混合纳米形貌V2O5具有较高的储锂容量、优异的电化学循环稳定性和出色的大倍率充放电性能,在1 A/g电流密度下循环500次后放电比容量稳定在117.5 mA·h/g,容量保持率为94.4%,在5 A/g大电流密度下,其放电比容量仍保持在88.2 mA·h/g,性能明显优于未添加P123制备的2D片状V2O5材料.  相似文献   

11.
将来源于造纸黑液中的碱木质素(AL)通过水热反应与纳米二氧化硅(SiO_2)复合,制备了二氧化硅/季铵化碱木质素复合物(SiO_2/QAL),再经过碳化和酸洗后得到二氧化硅/木质素多孔碳复合材料(SiO_2/PLC).形貌与结构表征结果表明,SiO_2/PLC的比表面积达到1069 m~2/g,具有平均孔径约20 nm的介孔结构.二氧化硅纳米颗粒均匀分散在三维网络结构的木质素多孔碳内部.电化学性能测试结果表明,SiO_2/PLC作为锂离子电池负极材料具有良好的倍率性能和循环性能,在100 mA/g电流密度下经过100周循环后放电比容量为820 mA·h/g,在5 A/g大电流密度下嵌锂容量达到235 mA·h/g.  相似文献   

12.
室温下, 在水溶液中将铵根离子和水分子插入到商用V2O5纳米颗粒的层间, 制得了层状的钒青 铜[(NH4)2V6O16·H2O]纳米片. 该纳米片的尺寸为2~10 μm, 厚度为50~250 nm. 与商用V2O5纳米颗粒相比, (NH4)2V6O16·H2O纳米片用作锂离子电池(LIBs)的阳极材料时, 其性能得到较大提升, 包括大的可逆放电容量 (0.1 A/g时为1148 mA·h/g)、 出色的循环性能(循环70圈后在0.1 A/g时具有1002 mA·h/g的高容量)和高倍率性能(在0.1 A/g时具有1070 mA·h/g的可逆性能). 研究结果表明, (NH4)2V6O16·H2O纳米片可以作为锂离子电池优良的阳极材料, 也有望应用于其它(如钠离子电池和锌离子电池等)可再充电电池.  相似文献   

13.
以Ca3N2为前驱体,用高温热解法制备了2D层状结构Ca2N 并用X射线和扫描电镜对Ca2N的组成、结构和形貌进行了表征。 作为钠离子电池新型负极材料,在50 mA/g电流密度充放电,首次放电比容量可达584 mA·h/g,可逆比容量达180 mA·h/g。在2000 mA/g大电流密度下,仍有70 mA·h/g。  相似文献   

14.
在球形SiO_2颗粒表面包覆适量的CuO,经还原得到铜包覆的多孔硅复合材料[p-Si@Cu(x)].利用X射线衍射、扫描电子显微镜、透射电子显微镜和比表面积分析等手段对样品的组成、物相结构、微观形貌和孔结构进行分析,并初步研究了材料的循环性能和倍率性能.结果表明,铜包覆量x=0.05时,在100 mA/g电流密度下,样品的首次放电容量为3596.9 mA·h/g,首次充电容量为2590.7 mA·h/g,首次库仑效率为72.03%;在1C倍率下可逆容量为1004.9 mA·h/g,0.1C倍率下循环100周后的可逆容量仍为1706.5mA·h/g,容量保持率为76.1%.  相似文献   

15.
通过溶剂热反应-水热处理的途径,制备了无定形碳包覆的ZnS纳米晶体(ZnS@C)与还原氧化石墨烯(rGO)复合的ZnS@C/rGO复合材料,并用X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和X射线光电子能谱(XPS)对复合材料进行了形貌和微观结构的表征。电化学测试结果表明,与ZnS@C和ZnS/rGO相比,所制备的ZnS@C/rGO复合材料显示了显著增强的电化学储锂性能,在100 mA·g-1电流密度下,其电化学储锂的首次可逆比容量为1 101 mAh·g-1,充放电循环100次后其可逆比容量为1 569 mAh·g-1。在不同电流密度下循环1 200次后,仍保持在2.0 A·g-1电流密度下有1 096 mAh·g-1的可逆比容量,显示了其稳定的长循环性能。  相似文献   

16.
万露  付争兵 《应用化学》2018,35(1):116-122
以钛酸正四丁酯为钛源、甲酸锂为锂源、柠檬酸为碳源、脲作为氮源,采用溶胶-凝胶法制备出了氮修饰碳包覆钛酸锂(Li4Ti5O12/NC)的复合电极材料。 借助X射线衍射仪(XRD)、X射线光电子能谱分析仪(XPS)、傅里叶变换红外光谱仪(FTIR)、热重分析仪(TGA)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)对Li4Ti5O12/NC的晶体结构、组成和形貌进行了表征分析,结果表明,所得产物是由尖晶石结构Li4Ti5O12外围包覆NC组成。 恒电流充放电实验结果显示,碳氮包覆量为9.48% 的Li4Ti5O12/NC材料在1C下首次放电比容量为212.9 mA·h/g,充放电循环100周后仍能保持160.1 mA·h/g的较高比容量。 碳氮包覆不会改变材料的晶型,但能有效抑制复合材料粒径增大,同时增加复合材料锂脱嵌活性位点,提高其比容量和导电性。  相似文献   

17.
采用在纳米SiO2表面包覆聚苯胺,并经过热处理后,制备了SiO2/C纳米复合材料.通过X射线衍射(XRD)、热重分析(TGA)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)对材料的晶体结构和表观形貌进行了表征.同时也对材料的电化学性能进行了测试,结果表明,50 mA/g电流密度下,SiO2/C纳米复合材料首次放电比容量达到830.5 mAh/g,100次循环后,放电比容量仍然保持在510 mA/g以上.电化学交流阻抗测试表明,SiO2表面包覆的碳层能显著减小电极的界面阻抗,提高电池的电化学性能.  相似文献   

18.
采用水热法制备了具有二维层状结构的钙钒青铜(CaxV2O5·nH2O, CVO)水系锌离子电池钒基正极材料, 并通过调控前驱体溶液中碳纳米管的含量, 得到3种钙钒青铜/碳纳米管复合材料(CVO@CNTs). 利用X射线衍射、 热重分析、 扫描电子显微镜和透射电子显微镜等对材料进行了表征. 结果表明, 所制备的CVO呈纳米带形貌, 长约十几微米, 宽约几百纳米, 选区电子衍射测试表明所得材料为单晶结构. 循环伏安测试结果表明, CVO和CVO@CNTs均具有多个氧化还原峰, 储锌机制包括赝电容行为和电池行为. 在放电倍率1C(1C=300 mA/g)测试条件下, CVO纳米带比容量稳定在210.1 mA·h/g; 与CNTs复合后, CVO@CNTs复合材料的电荷转移阻抗降低, 在相同测试条件下表现出更高的比容量和优异的倍率性能. 其中, CVO@CNTs-40表现出最高的比容量, 在1C倍率测试条件下的比容量可达274.3 mA·h/g, 即使在20C的测试条件下放电比容量仍可达85.2 mA·h/g, 且循环1000次后容量保持率能达到92%.  相似文献   

19.
张鑫宇  曲江英  汤占磊  李杰兰  高峰 《应用化学》2020,37(10):1172-1180
以类沸石咪唑酯骨架化合物ZIF-67为钴源、碳源和氮源前驱体,红磷作为磷源,在800 ℃煅烧直接制备氮掺杂碳包覆的Co2P@N-C和CoP@N-C复合物,并研究其作为锂离子电池负极材料的电化学性能。 结果表明,所得复合物的组分可以通过调控ZIF-67和红磷的比例而改变。 所得复合物的结构为正十二面体,尺寸约250~400 nm,具有良好的导电性。 用作锂离子电池电极材料时,在电流密度为0.05 A/g下,Co2P@N-C和CoP@N-C复合物首次放电容量分别达到942和1170.6 mA·h/g。 在1 A/g的电流密度下,经过500次循环容量依然可以保持在306.6和180.3 mA·h/g。 论文提供了一种绿色环保制备锂电池用磷化钴/碳复合物的简易方法。  相似文献   

20.
制备了一种核壳带状C/VN复合材料,通过SEM和TEM研究了复合材料的形貌结构。以ZIF-8/V2O5·nH2O、C/V2O5和C/VN三种材料作为含硫正极,锂片为负极,1.0 M LiTFSI,2%LiNO3/DME∶DOL(体积比1∶1)为电解液,组装锂硫电池进行电化学测试。结果表明:C/VN能够显著提高正极材料的电化学性能,促进充放电过程中的电子转移;S@C/VN在0.5 C的电流密度下初始比容量为900.4 mAh/g,经过500圈后,仍能提供413.9 mAh/g的比容量,展现了S@C/VN优异的循环性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号