首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 796 毫秒
1.
CCl4 对左旋氧氟沙星超声降解的影响   总被引:2,自引:0,他引:2  
研究了CCl4对超声降解喹诺酮类抗生素左旋氧氟沙星(Levofloxacin)的影响, 考察了CCl4添加量、 超声功率、 溶液初始pH值及左旋氧氟沙星初始浓度等影响因素, 并采用HPLC和LC-MS/MS对超声降解产物进行了初步分析. 结果表明, CCl4增强了左旋氧氟沙星的超声降解, 当反应液体积为50 mL, 超声35 min时, 随着CCl4体积分数的增大(0~0.06%), 左旋氧氟沙星的降解率由1.9%增至69.2%; 超声功率为100~200 W时, 降解率随着功率的升高而增大, 功率为200~400 W时降解率有所降低; pH值对左旋氧氟沙星的超声降解影响很大, pH =7.14时容易超声降解, pH过低或过高均导致降解率显著减小; CCl4的体积分数一定时, 左旋氧氟沙星的降解率随其初始浓度的增大而降低; 左旋氧氟沙星的降解率在33~49 ℃时最大. CCl4强化超声降解左旋氧氟沙星过程主要是由·OH和一系列氯自由基参与的反应. HPLC分析发现, 降解过程中同时生成了2个产物, 并通过LC-MS/MS对其进一步鉴定.  相似文献   

2.
《广州化学》2015,(4):7-12
通过Fe~(2+)活化Na_2S_2O_8产生强氧化性的硫酸根自由基,利用硫酸根自由基氧化降解有机污染物。以日落黄为降解目标物,通过研究有无Fe~(2+)、Na_2S_2O_8对日落黄降解率的影响,来探讨Fe~(2+)活化Na_2S_2O_8降解日落黄的可行性,并采用叔丁醇和甲醇抑制剂的方法探究了降解日落黄的作用机理。重点考察了Fe~(2+)初始浓度、Na_2S_2O_8初始浓度、柠檬酸浓度以及pH值对Fe~(2+)活化Na_2S_2O_8降解日落黄的影响。实验结果表明:在Fe~(2+)-Na_2S_2O_8体系中,日落黄初始质量浓度为30 mg/L、Fe~(2+)摩尔浓度为1.0 mmol/L、Na_2S_2O_8摩尔浓度为2.0 mmol/L、柠檬酸摩尔浓度为1.0 mmol/L、pH值为3.0的条件下,反应时间为60 min时日落黄降解率可达95.37%。  相似文献   

3.
采用溶胶凝胶法制备纳米TiO2光催化剂,引入超声作用,以空气中的氧气为氧化剂,正辛烷为模拟油品对燃料油中硫化物的脱除进行了研究。考察了光照强度、催化剂用量、反应时间、二苯并噻吩(DBT)初始浓度、超声功率等因素对TiO2光催化二苯并噻吩溶液降解效率的影响。结果表明,引入超声后DBT的降解率提高了10%左右,并在TiO2用量为2 g/L,通气量为800 mL/min,光照距离20 cm,DBT初始浓度为600 mg/L,反应时间为150 min,超声功率为500 W的条件下,DBT降解率达到了72.6%。  相似文献   

4.
采用树脂碳化和水热两步法制备C/Fe-Bi_2WO_6光催化剂,对不同光催化剂光催化降解诺氟沙星溶液的去除效果进行对比研究。考察了条件因素对诺氟沙星(NOR)溶液在模拟太阳光下光催化氧化降解的影响规律。结果表明,在实验条件下,NOR光催化氧化降解符合L-H拟一级反应动力学模型,在NOR溶液初始浓度10 mg/L、溶液p H=7.0、催化剂用量0.75 g/L、H_2O_2浓度为200 mg/L、500 W氙灯照射60 min条件下,NOR完全分解,表观速率常数K_(app)为0.0751 min-1。采用分子荧光光谱法,对C/Fe-Bi_2WO_6光催化氧化去除NOR体系中羟基自由基生成规律进行研究,并推测了反应机理。结合LC-MS的分析结果,推测了NOR可能的降解路径和中间产物。  相似文献   

5.
声化学降解染料结晶紫的研究   总被引:3,自引:0,他引:3  
采用频率为20 kHz的超声波降解阳离子染料结晶紫(CV)溶液,考察了溶液初始浓度、pH值、声能强度、时间、温度等因素对染料声化学降解过程的影响.实验结果表明,溶液初始浓度为30 mg/L、pH=8.0、声强=47.5 W/cm2、超声辐照50 m in,CV的脱色率达97.8%;CV的超声降解过程以高温热解反应为主,服从动力学一级反应;当超声/H2O2、超声/镁联合作用时,二者产生协同效应,溶液中产生大量OH自由基,强化了CV的声化学脱色和降解过程.  相似文献   

6.
本文为优化梁王茶茎皮多糖(PND)的提取工艺,并评价其抗氧化活性,以多糖提取率为评价指标,在单因素实验的基础上采用响应面法对超声时间、超声温度和超声功率三个影响梁王茶多糖提取工艺的主要因素进行优化;再通过DPPH、ABTS自由基清除实验和FRAP法评估其抗氧化能力。结果表明,超声提取梁王茶茎皮多糖的最佳工艺条件为超声时间120 min、超声温度60℃、超声功率125 W、浸泡时间20 min、液料比10∶1及乙醇浓度80%,该条件下多糖提取率为4.780%。抗氧化实验表明,梁王茶茎皮多糖浓度在1~10 mg·mL~(-1)范围内,随多糖浓度增加DPPH自由基清除能力增强,IC_(50)值为7.591±0.205 mg·mL~(-1);以Trolox当量来表示其ABTS自由基清除能力为1.464±0.194 mmol Trolox/g PND;以Fe~(2+)当量来表示其还原能力为0.302±0.020 mmol Fe~(2+)/g PND。  相似文献   

7.
采用超声MnO2体系降解丁基罗丹明B染料,考察了pH值、声强、MnO2投加量等因素对染料降解过程的影响。实验结果表明,溶液pH=3.0,MnO2投加量为1.5g/L,声强=40.7W/cm2,超声辐照10mg/L的罗丹明B溶液48m in,染料的脱色率为98.73%;超声和MnO2的协同效应在酸性条件下较为明显,溶液中产生大量.OH强化了对染料的声化学脱色和降解过程;丁基罗丹明B的超声降解过程以自由基的氧化反应为主,服从动力学一级反应。  相似文献   

8.
利用零价铁(Fe0)活化过二硫酸钠(PDS)产生硫酸根自由基(SO4-.)降解环境中的阿特拉津。初步探讨了介质初始pH值、PDS初始浓度、Fe0加入量对阿特拉津降解率的影响,并比较了铁量相同的Fe0/PDS、Fe2+/PDS和Fe3+/PDS 3种体系对阿特拉津的降解能力。结果表明,在初始pH=6.5、1 mL初始浓度为2.0 mmol/L PDS、Fe0加入量为28 mg的条件下,反应60 min后,Fe0/PDS体系对100 mL浓度为0.10 mmol/L阿特拉津的降解率达到99.0%,远高于Fe0、PDS、Fe2+/PDS和Fe3+/PDS 4种体系对阿特拉津的降解率。另外,酸性介质、增加Fe0或PDS的投入量均有利于提高阿特拉津的降解率。同时,通过采用甲醇和叔丁醇作为分子探针鉴定了Fe0/PDS体系中产生的活性中间体SO4-.和羟基自由基(.OH)。  相似文献   

9.
将Keggin型铁取代杂多阴离子PW11O39Fe(Ⅲ)(H2O)4-[PW11Fe(Ⅲ)(H2O)]构成的类光-芬顿体系用于水体生物难降解有机污染物苯胺(ArNH2)的降解。 研究了在紫外光照射和H2O2存在下,PW11Fe(Ⅲ)(H2O)对ArNH2降解的均相光催化作用。 考察了ArNH2、H2O2和PW11Fe(Ⅲ)(H2O)浓度对光催化降解反应速率的影响。 实验结果表明,0.1 mmol/L PW11Fe(Ⅲ)(H2O)+0.2 mmol/L H2O2+0.1 mmol/L ArNH2的中性溶液在300 W汞灯照射下反应60 min,ArNH2的降解率达100%,总有机碳(TOC)去除约52%。 同时讨论了PW11Fe(Ⅲ)(H2O)光催化H2O2产生羟基自由基的分子机制,并比较了酸性和中性条件下苯胺的光催化降解效果。  相似文献   

10.
采用功率350W、40kHz超声波器和紫外光同时对水中的苯酚进行降解,考察了样品苯酚溶液的pH及浓度、加入6%H2O2和0.001mol/LFe2 (FeSO4)的量、超声波超声功率、紫外光照射的时间、紫外-超声联用降解的时间等条件的影响。结果表明,在苯酚的最佳降解条件(紫外-超声联用下作用60min,pH3~4,加入6%的H2O24mL和0.001mol/L的Fe2 (FeSO4)1.6mL)下,苯酚的降解率达91.8%,证明超声波诱导紫外光协同法是一种降解苯酚的有效方法。  相似文献   

11.
建立了婴幼儿奶瓶中双酚A(BPA)迁移量的高效液相色谱-电喷雾串联质谱(HPLC-ESI-MS/MS)测定方法。奶瓶食品模拟浸泡液经过弗罗里硅土玻璃层析柱净化,高效液相色谱分离,采用选择反应性监测模式(SRM)检测。以一级质谱得到的准分子离子m/z 227作为母离子,进行二级质谱(MS2)分析。选择MS2的碎片离子m/z 212、133、93定性确证,m/z 212作为定量离子定量。实验优化了质谱条件,并对二级质谱碎裂机理和特征离子进行了研究。测定结果的相对标准偏差不大于8.2%(n=7),回收率在87.7%~105%之间;检出限为2μg/L,能够满足欧盟、美国等对奶瓶中双酚A的限制要求。该法已成功应用于婴幼儿奶瓶中BPA迁移量的测定。  相似文献   

12.
建立了高效液相色谱法测定间苯二酚反应液中间苯二酚含量的方法。色谱柱为Diamonsil ODS(150 mm×4.6 mm,5μm),流动相为A与B的混合液(体积比为5∶95,A:乙腈,B:5 mmol/L1,8-二胺辛烷与20 mmol/L庚磺酸钠水溶液混合后调节至pH4.5),检测波长为276 nm。间苯二酚与反应液中其它杂质分离较好。间苯二酚的浓度在0.1~0.5 g/L范围内与色谱峰面积呈良好的线性。加标回收率为99.25%~99.44%,测定结果的相对标准偏差为0.85%(n=8)。  相似文献   

13.
A sensitive and selective liquid chromatography-electrospray ionization tandem mass spectrometry(LCESI- MS/MS) was used for the simultaneous determination of metformin and glimepiride in beagle dog plasma with glipizide as internal standard(IS). After simplified protein precipitation with methanol, both the analytes and IS were chromatographed on a Zorbax CN column via gradient elution with methanol(containing 5 mmol/L ammonium acetate) and 5 mmol/L aqueous ammonium acetate as the mobile phase. Detection was performed by multiple reaction monitoring(MRM) scanning via ESI source operated in positive ionization mode. Specificity, linearity, accuracy, precision, recovery, matrix effect and stability were validated for metformin and glimepiride in beagle dog plasma. The calibration curves were linear in a concentration range of 10―10000 ng/mL for metformin and 4―4000 ng/mL for glimepiride with both correlation coefficients higher than 0.99. The recoveries obtained for the analytes and IS were all between 82.7% and 101.2%. The method exhibited excellent performance in terms of selectivity, robustness, short analytical time and simplicity of sample preparation. Finally, the proposed method was applied to a bioequivalence study of self-made bilayer tablet and commercial formulation containing 500 mg of metformin and 1 mg of glimepiride in beagle dogs.  相似文献   

14.
对甲基苯酚电催化氧化机理   总被引:4,自引:0,他引:4  
在无隔膜电解槽中, 利用线性伏安法和恒电流电解法研究了Ti/PbO2电极对于对甲基苯酚氧化的电催化活性, 通过阳极过程中对甲基苯酚及其氧化中间产物的液相色谱测定, 研究了对甲基苯酚电催化氧化降解的机理. 研究结果表明, Ti/PbO2电极能够有效地电催化氧化水溶液中的对甲基苯酚, 在25 ℃下, 初始浓度为2 mmol/L的对甲基苯酚溶液, 恒定电流密度为50 mA/cm2, 电解3 h, 对甲基苯酚的转化率为74.32%, 有机碳去除率为61.81%. 对甲基苯酚电氧化降解要经过生成对羟基苯甲醇、对羟基苯甲醛、对羟基苯甲酸、对苯二酚、对苯醌、顺丁烯二酸和草酸, 最终变成CO2的历程, 其中对苯二酚的氧化和顺丁烯二酸的氧化为反应的速控步骤.  相似文献   

15.
利用液相色谱-串联质谱(LC-ESI-MS/MS)测定动物源性食品中的硝呋烯腙残留量。通过实验,对样品前处理及仪器检测条件进行了优化。样品经提取和固相萃取净化后,采用HPLC-ESI-MS/MS进行检测,在多反应监测模式(MRM)下,外标法定量。方法的检出限为2.0μg/kg,在1.0~100.0μg/L范围内线性关系良好(相关系数r>0.99),平均添加回收率为66%~82%。  相似文献   

16.
Three novel L-histidine amide derivatives were synthesized and the corresponding chemical structures were characterized by means of melting point analysis, IR, MS, 1H NMR as well as 13C NMR. The coagulation acti- vities of the compounds were evaluated by an MOE(molecular operating environment) docking technique and coagulation test. The results obtained from molecular docking show that the interactions between the compounds and thrombin exhibit procoagulant activity in combination with an improved combinatory effect. Moreover, the results of in vitro coagulation tests show that the L-histidine amide derivatives feature coagulant activities in common coagulation pathways. Compared with the blank control group, the optimal shortening rates of compounds 1―3 were 39.08%(0.5 mmol/L), 22.94%(1.0 mmol/L) and 15.38%(0.0625 mmol/L), respectively.  相似文献   

17.
建立了高效液相色谱–四极杆飞行时间串联质谱快速检测饮料中糖精钠、甜蜜素、安赛蜜、阿斯巴甜、纽甜、三氯蔗糖6种人工合成甜味剂的方法。样品经水提取,采用C18色谱柱,以甲醇和0.1%甲酸–10 mmol/L甲酸铵溶液为流动相,梯度洗脱,四极杆飞行时间串联质谱电喷雾负离子模式检测。各化合物在0.02~2.0 mg/L范围内均呈现良好的线性关系,相关系数均大于0.998。样品平均添加回收率为63.0%~113.2%,测定结果的相对标准偏差均小于9.6%(n=5)。该方法简便快捷,选择性好,灵敏度高,可满足国内外现行法规的限量要求。  相似文献   

18.
建立一种快速测定不同产地的白刺果中氨基酸含量的HPLC方法。采用柱前邻苯二甲醛(OPA)和氯甲酸芴甲酯(FMOC)联合在线衍生、二元梯度洗脱(流动相A:40 mmol/L NaH2PO4·H2O,pH 7.8;流动相B:乙腈–甲醇–水的体积比为4.5∶4.5∶1)、反相C18短柱分离(色谱柱:Zorbax Eclipse AAA C18柱,75 mm×4.6 mm,3.5μm)、二极管阵列检测器(检测波长:338 nm;参考波长:390 nm)和荧光检测器(激发波长:340 nm;发射波长:450nm)联合检测,内标法定量。各氨基酸含量在4.5~900μmol/L范围内线性关系良好,相关系数为0.991 2~0.999 8,除了蛋氨酸(部分氧化降解)加标回收率为78.1%外,其它各氨基酸的加标回收率为93.1%~105.1%,相对标准偏差为3.21%~6.23%(n=5)。对产自青海、新疆和内蒙古等3个地区的白刺果中氨基酸含量进行了测定,氨基酸总量分别为11.23,10.47,8.84 g/(100 g),并对各种不同类型氨基酸占氨基酸总量的比例进行了分析。该法适合于白刺果氨基酸含量的测定。  相似文献   

19.
建立高效液相色谱测定葛根芩连片中葛根素含量的方法。以体积分数50%的甲醇为提取液对样品超声提取20 min,采用DiamonsilTMC18(250 mm×4.6 mm,5μm)色谱柱,以甲醇–乙腈–水(体积比8∶12∶80)为流动相,流速为1.0 mL/min,检测波长为250 nm,柱温为30.0℃,进样量体积10μL。在最佳实验条件下,葛根素与其它物质能完全分离,葛根素的质量浓度在5.43~543.2μg/mL范围内与色谱峰面积呈良好的线性,线性相关系数r=0.999 9,方法检出限为3.50μg/mL(S/N=3)。方法加标回收率为100.0%,测定结果的相对标准偏差为1.6%(n=6)。该方法简单、快速、重现性好,适用于葛根芩连片中葛根素的测定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号