首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
拉伸分子动力学模拟配体-受体相互作用   总被引:3,自引:0,他引:3       下载免费PDF全文
配体和受体之间的相互作用研究有助于阐明配体的作用机理, 为合理药物设计提供线索. 新发展的拉伸分子动力学模拟使原来在微秒至秒时间范围内发生的生物化学过程可以在纳秒尺度内进行模拟, 从而动态再现目前实验所无法提供的配体与受体的结合或解离过程. 文中通过详细介绍拉伸分子动力学方法对石杉碱甲与乙酰胆碱酯酶结合和解离过程以及HIV-1逆转录酶和其非核苷酸类似物抑制剂α-APA解离过程的成功模拟, 综述拉伸分子动力学模拟在研究配体和受体相互作用中的应用.  相似文献   

2.
采用分子动力学模拟方法系统地研究了谷胱甘肽硫转移酶家族(Glutathione S-transferases,GSTs)的等位基因蛋白B(GSTP1*B)与抑制剂利尿酸(EA)以及EA的谷胱甘肽(GSH)共轭物EAG(I),EAG(O)的具体结合方式.抑制剂及其谷胱甘肽共轭物与蛋白的相互作用能计算结果及分子动力学轨迹的统计分析结果表明,GSTP1*B与EA的谷胱甘肽共轭物的结合能力优于其与EA的结合能力,Phe8,Arg13,Trp38和Tyr108是作用过程中的关键残基,对稳定抑制剂及其谷胱甘肽共轭物在GSTP1*B的G和H位点的构象具有重要的作用.通过对构象的统计分析发现,残基Phe8和Tyr108与GSTP1*B酶对抑制剂的选择性密切相关.  相似文献   

3.
扈国栋  张少龙  张庆刚 《化学学报》2009,67(9):1019-1025
FKBP12 (FK506-binding protein-12)是一种具有神经保护和促神经再生作用的蛋白. 采用分子动力学模拟取样, 运用MM-GBSA方法计算了FKBP12和3个抑制剂(GPI-1046, 308和107)的绝对结合自由能, GPI-1046的结合能最小, 308小于107的结合能. 通过能量分解的方法考察了FKBP12蛋白的主要残基与抑制剂之间的相互作用和识别, 计算结果表明: 3个抑制剂具有相似的结合模式, Ile56和Tyr82主要表现为氢键作用, Tyr26, Phe46, Val55, Ile56, Trp59, Tyr82, Tyr87和Phe99形成疏水作用区. 计算结果和实验结果吻合.  相似文献   

4.
采用多拷贝同时搜寻方法(MCSS)分析得到了CaNMT活性位点的疏水区域、氢键结合位点和负电性区域. MCSS计算结果显示, CaNMT活性位点有两个疏水性比较强的区域: 一个由Tyr107, Tyr109, Val108, Phe117, Phe123, Ala127, Phe176和Leu337等残基组成; 另一个由Phe115, Phe240和Phe339组成. CaNMT活性位点发现有两个氢键作用区域, 其中Tyr119, His227, Asn392和Leu451是与已有抑制剂的氢键结合位点, Tyr107, Asn175, Thr211和Asp412是新发现的氢键结合位点, 而且在NMT家族中高度稳定, 它们对设计新结构类型的CaNMT抑制剂具有重要作用. Leu451是负电性兼氢键作用位点, 是抑制剂设计时所必需考虑的位点.  相似文献   

5.
采用分子动力学模拟和拉伸分子动力学模拟方法, 结合分子力学-广义玻恩表面积(MM-GB/SA)方法进行自由能计算和结构交互指纹分析, 研究了模拟过程中非特异性底物(对氧磷/内酯)分别与嗜热磷酸三酯酶样内酯酶(SsoPox)野生型和突变体(W263F/W263T)结合的构象变化, 分析了Loop8中重要残基Trp263的突变提高SsoPox非特异性底物活力的原因, 发现其能够影响门控残基Phe229的构象变化, 导致活性口袋入口变宽(Phe229与Tyr99之间的距离变大), 使对氧磷和内酯更容易结合到蛋白质的活性位点上; Asp256和Arg223形成盐桥的几率高于野生型(WT)SsoPox, 在Arg223(位于Loop7)的协助下质子更加高效地从活性中心的Asp256(位于Loop8)传递到溶剂中去, 因而能够提高SsoPox水解底物的效率. 通过比较2个野生型复合物的结构稳定性和结合自由能差异, 发现在模拟过程中SsoPox与内酯的复合物体系更加稳定并且具有更低的结合自由能, 有利于SsoPox识别底物并使其埋在活性部位的疏水环境中, 促进氢氧化物亲核进攻底物的亲电中心. 因此, 底物与酶稳定的相互作用可能是SsoPox具有天然内酯酶活性的原因之一.  相似文献   

6.
应用分子模拟理论与方法研究了人类沉默信息调节因子2相关酶类Sirtuin家族成员Sirt1及Sirt2与一种活性分子(命名为INA)的作用机制.同源模建了Sirt1的三维结构,通过分子对接手段得到Sirt1(NAD+)-INA及Sirt2(NAD+)-INA的两种复合物体系,进行了分子动力学模拟.并且分别计算了两种体系中关键氨基酸残基与INA的结合自由能值,由此推测出Sirt1(NAD+)-INA、Sirt2(NAD+)-INA体系结合位点分别为Val72,Ser73和Arg272及Phe235,Leu264和Gly305,确证了两种体系的结合模式.模拟结果表明,在Sirt1(NAD+)-INA体系中,INA与催化底物NAD+距离较近,可以相互作用,具有较高活性;在Sirt2(NAD+)-INA体系中,INA与催化底物NAD+距离较远,与在Sirt1体系中比较,INA对Sirt2体系的活性较弱,结果与实验一致.本文的研究,对今后以去乙酰化酶Sirt1,Sirt2为靶点的新药开发具有一定指导意义.  相似文献   

7.
运用分子对接和分子动力学方法研究二甲基精氨酸二甲胺水解酶-1(DDAH-1)与其抑制剂亚胺基烯丁基-L-鸟氨酸(L-VNIO)和亚胺基丙基-L-鸟氨酸(Me-L-NIO)的相互作用和结合模式,并根据实验得到的结论设计了亚胺基苯乙基-L-鸟氨酸(Ph-L-NIO)抑制剂.结果表明:L-VNIO比Me-L-NIO对DDAH-1的抑制效果更强,这个结果与实验测得L-VNIO和Me-L-NIO对DDAH-1的半抑制浓度IC50值大小一致.Phe75、Asp78、His172、Ser175和Asp268这五个氨基酸残基在三种抑制剂形成的复合物中起到非常重要的作用,从计算结果推断在这三个抑制剂中我们设计得到的Ph-L-NIO对DDAH-1的抑制效果最好.  相似文献   

8.
利用分子动力学模拟与酶学实验相结合的方法, 研究了L-缬氨酸(L-Val)对野生型和突变型精氨酸酶Ⅰ的酶促反应动力学的影响. 精氨酸酶Ⅰ的活性口袋附近有一个较大的空穴C2, 分子动力学模拟结果显示, 突变Ile156Arg缩小了空穴C2的容积, 而实验结果表明, L-Val对突变型精氨酸酶Ⅰ抑制剂的半抑制浓度(IC50)由3.06 mmol/L升高到6.26 mmol/L, 增加了1倍, 因此精氨酸酶Ⅰ可能存在一个位于空穴C2的调节位点, 并且L-Val可以结合于此干扰精氨酸酶Ⅰ的活性.  相似文献   

9.
康文渊  徐锡明  郭建秀  田菲菲 《化学通报》2017,80(2):179-184,207
芳香烃受体(Aryl hydrocarbon receptor,AhR)属于配体依赖性的转录因子蛋白。本文通过对AhR配体结合区域(Ligand binding domain,LBD)的结构功能及物种特异性分析,发现在其结合腔口有一些关键残基可能起到"门控"作用,进一步将野生型(WT)和3个突变模型(Phe289Ala、Tyr316Ala、Ile319Ala)进行分子动力学模拟,从蛋白稳定性、蛋白结构变化、蛋白结合腔变化及蛋白和配体结合能力4个方面分析3个残基的门控作用。研究发现,Phe289、Tyr316、Ile319氨基酸残基通过形成疏水作用为AhR LBD起到"门控"作用;而将这些氨基酸分别突变后,其蛋白稳定性降低,整体运动性增加,配体亲和力减弱,其中Tyr316、Ile319对腔内体积影响较大,Phe289使腔内环境稳定性降低。本研究可为基于芳香烃受体的药物设计提供相关理论指导。  相似文献   

10.
采用平衡分子动力学和拉伸分子动力学模拟方法研究了模板诱导有机发光小分子3(5)-(9-蒽基)吡唑(ANP)在自组装膜上的选择性沉积,并利用伞形取样方法和加权柱状图分析法计算了沉积过程的均力势.模拟中以二氧化硅为底板分别构筑2种不同密度的烷烃链自组装膜模板,即低密度的液体扩展相和高密度的液体压缩相.平衡分子动力学结果显示,ANP分子容易沉积至低密度的液体扩展相中,难以沉积至高密度的液体压缩相中.拉伸分子动力学结果表明,当ANP分子沉积至液体压缩相表面时,在进入烷烃膜时遇到较大阻力,因而不易进入到烷烃链单层膜中;而ANP分子在进入液体扩展相的过程中受到的阻力较小.通过比较这2种不同密度自组装膜与ANP分子之间的结合自由能,发现ANP分子进入液体压缩相的能垒较高,而ANP分子与液体扩展相结合更加稳定,导致有机发光小分子在不同密度的模板上具有选择吸附性.所得模拟结果与实验现象一致,在分子水平上为实验提供了更加丰富的微观信息.  相似文献   

11.
Xanthine oxidase (XO) catalyzes the metabolism of hypoxanthine and xanthine to uric acid, the overproduction and/or underexcretion of which could cause the incidence of hyperuricemia such as gout. Herein, the inhibition of XO is recognized as one of the therapeutic approaches to treat gout. In the present study, an off‐line fluorescence‐based microplate method was first developed for an XO assay in which the enzyme converted pterin to its fluorescent metabolite isoxanthopterin. Then, a postcolumn continuous XO assay as a means of bioactivity assessment was coupled to HPLC separation to establish the online HPLC with diode array detection, biochemical detection, and MS/MS system for the screening of XO inhibitors. The availability of the online system was first tested with a positive drug, allopurinol, a well‐known XO inhibitor, and subsequent analysis of Scutellaria baicalensis extract showed that two main bioactive compounds with XO inhibitory activities were observed, indicating that the developed online system was applicable to complex mixtures.  相似文献   

12.
Xanthine oxidase is considered as a potential target for treatment of hyperuricemia. Hyperuricemia is predisposing factor for gout, chronic heart failure, atherosclerosis, tissue injury, and ischemia. To date, only two inhibitors of xanthine oxidase viz. allopurinol and febuxostat have been clinically approved for used as drugs. In the process of searching for new xanthine oxidase inhibitors, we screened culture filtrates of 42 endophytic fungi using in vitro qualitative and quantitative XO inhibitory assays. The qualitative assay exhibited potential XO inhibition by culture filtrates of four isolates viz. #1048 AMSTITYEL, #2CCSTITD, #6AMLWLS, and #96 CMSTITNEY. The XO inhibitory activity was present only in the chloroform extract of the culture filtrates. Chloroform extract of culture filtrate #1048 AMSTITYEL exhibited the highest inhibition of XO with an IC50 value of 0.61 μg ml?1 which was better than allopurinol exhibiting an IC50 of 0.937 μg ml?1 while febuxostat exhibited a much lower IC50 of 0.076 μg ml?1. Further, molecular phylogenetic tools and morphological studies were used to identify #1048 AMSTITYEL as Lasiodiplodia pseudotheobromae. This is the first report of an endophytic Lasiodiplodia pseudotheobromae from Aegle marmelos exhibiting potential XO Inhibitory activity.  相似文献   

13.
Acetaldehyde dehydrogenase 1A1 is a hopeful therapeutic target to ovarian cancer. In this present work, 3D-QSAR, molecular docking and molecular dynamics(MD) simulations were implemented on a series of quinoline-based ALDH1A1 inhibitors to investigate novel acetaldehyde dehydrogenase 1A1 inhibitors as anticancer adjuvant drugs for ovarian cancer. Two reliable CoMFA(Q~2 = 0.583, R~2 = 0.967) and CoMSIA(Q~2 = 0.640, R~2 = 0.977) models of ALDH1A1 inhibitors were established. Novel ALDH1A1 inhibitors were predicted by the 3D-QSAR models. Molecular docking reveals important residues for protein-compound interactions, and the results revealed ALDH1A1 inhibitors had stronger electrostatic interaction and binding affinity with key residues of protein, such as Phe171, Val174 and Cys303. Molecular dynamics simulations further verified the results of molecular docking. The above information provided significant guidance for the design of novel ALDH1A1 inhibitors.  相似文献   

14.
A series of diphenyl ether derivatives were developed and showed promising potency for inhibiting InhA, an essential enoyl acyl carrier protein reductase involved in mycolic acid biosynthesis, leading to the lysis of Mycobacterium tuberculosis. To understand the structural basis of diphenyl ether derivatives for designing more potent inhibitors, molecular dynamics (MD) simulations were performed. Based on the obtained results, the dynamic behaviour in terms of flexibility, binding free energy, binding energy decomposition, conformation, and the inhibitor–enzyme interaction of diphenyl ether inhibitors were elucidated. Phe149, Tyr158, Met161, Met199, Val203 and NAD+ are the key residues for binding of diphenyl ether inhibitors in the InhA binding pocket. Our results could provide the structural concept to design new diphenyl ether inhibitors with better enzyme inhibitory activity against M. tuberculosis InhA. The present work facilitates the design of new and potentially more effective anti-tuberculosis agents.  相似文献   

15.
Ricin and its corresponding polypeptides (A & B chain) were purified from castor seed. The molecular weight of ricin subunits were 29,000 and 28,000 daltons. The amino acids in ricin determined were Asp45 The22 Ser40 Glu53 Cys4 Gly96 His5 Ile21 Leu33 Lys20 Met4 Phe13 Pro37 Tyr11 Ala45 Val23 Arg20 indicating that ricin contains approximately 516 amino acid residues. The amino acids of the two subunits of ricin A and B chains were Asp23 The12 Ser21 Glu29 Cys2 Gly48 His3 Ile12, Leu17 Lys10 Met2 Phe6 Pro17 Tyr7 Ala35 Val13 Arg13 while in B chain the amino acids were Asp22 The10 Ser19 Glu25 Cys2 Gly47 His1 Ile10, Leu15 Lys11 Met1 Phe7 Pro6 Tyr5 Ala32Val11 Arg10. The total helical content of ricin came around 53.6% which is a new observation.  相似文献   

16.
Dryopteris crassirhizoma rhizomes are used as a traditional medicine in Asia. The EtOAc extract of these roots has shown potent xanthine oxidase (XO) inhibitory activity. However, the main phloroglucinols in D. crassirhizoma rhizomes have not been analyzed. Thus, we investigated the major constituents responsible for this effect. Bioassay-guided purification isolated four compounds: flavaspidic acid AP (1), flavaspidic acid AB (2), flavaspidic acid PB (3), and flavaspidic acid BB (4). Among these, 1 showed the most potent inhibitory activity with a half-maximal inhibitory concentration (IC50) value of 6.3 µM, similar to that of allopurinol (IC50 = 5.7 µM) and better than that of oxypurinol (IC50 = 43.1 µM), which are XO inhibitors. A comparative activity screen indicated that the acetyl group at C3 and C3′ is crucial for XO inhibition. For example, 1 showed nearly 4-fold higher efficacy than 4 (IC50 = 20.9 µM). Representative inhibitors (1–4) in the rhizomes of D. crassirhizoma showed reversible and noncompetitive inhibition toward XO. Furthermore, the potent inhibitors were shown to be present in high quantities in the rhizomes by a UPLC-QTOF-MS analysis. Therefore, the rhizomes of D. crassirhizoma could be used to develop nutraceuticals and medicines for the treatment of gout.  相似文献   

17.
To find potential lead compounds for antigout drug discovery, an automated online, restricted-access material coupled with column-switching liquid chromatography with a diode-array detection (RAM–LC–DAD) system was developed for screening of xanthine oxidase (XO) inhibitors and their affinity rankings in complex mixtures. The system was first evaluated by analyzing a mixture of six compounds with known inhibition of XO. Nonspecific binding to the denatured XO was investigated and used as the control for screening. Subsequently, the newly developed system was applied to screening of a natural product, Oroxylum indicum extract, and four compounds which could specifically interact with XO were found and identified as oroxin B, oroxin A, baicalin, and baicalein. The results were verified by a competitive binding test using the known competitive inhibitor allopurinol and were further validated by an inhibition assay in vitro. The online RAM–LC–DAD system developed was shown to be a simple and effective strategy for the rapid screening of bioactive compounds from a complex mixture.
Figure
Scheme of RAM-LC-DAD assay for affinity screening of xanthine oxidase inhibitors  相似文献   

18.
Drug‐binding kinetics could play important roles in determining the efficacy of drugs and has caught the attention of more drug designers. Using the dissociation of 1H‐pyrrolo[2,3‐b]‐pyridines from the focal adhesion kinase as an example, this work finds that steered molecular dynamics simulations could help screen compounds with long‐residence times. It also reveals a two‐step mechanism of ligand dissociation resembling the release of ADP from protein kinase A reported earlier. A phenyl group attaching to the pyrrole prolongs residence time by creating a large activation barrier for transition from the bound to the intermediate state when it becomes exposed to the solvent. Principal component analysis shows that ligand dissociation does not couple with large‐scale collective motions of the protein involving many of its amino acids. Rather, a small subset of amino acids dominates. Some of these amino acids do not contact the ligands directly along the dissociation pathways and could exert long‐range allosteric effects. © 2018 Wiley Periodicals, Inc.  相似文献   

19.
Transthyretin(TTR), as a tetrameric protein, functions as a neuroprotector. The native TTR homotetramer dissociates into dimers and monomers. Dimers and monomers self-assemble into amyloid fibrils, and this process can lead to some diseases. Native TTR homotetramer is a widely accepted model for TTR amyloid formation. In this study, simulations using molecular dynamics(MD) and steered MD(SMD) were performed to explore the mechanisms for glabridin(Glab), a specific inhibitor for TTR binding, for V30A mutant and wild-type(WT) TTR. MD simulation results indicate that, compared with Glab binding to WT and V30A mutant, the WT TTR could lead to the collapse of β-strands from Ser52 to His56 at chain A. This phenomenon facilitated the easy dissociation of chains A and C. Calculations of the binding free energy between the two chains showed that the V30A-Glab TTR complex displayed a lower binding energy than other systems(WT TTR and WT-Glab TTR). Then, SMD simulation was performed to explore the unbinding pathway for Glab through the WT and V30A mutant TTR. The results show that Lys15(chain A) produced a hydrogen bond with Glab at the force peak via the WT TTR tunnel. Meanwhile, in the V30A TTR mutant, the hydrogen bond between Lys15(chain A) and Glab was broken at the force peak. This condition was beneficial for Glab to be taken off from the protein. Our theoretical results will be useful in designing a new specific inhibitor of TTR protein to control the TTR homotetramer dissociation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号