首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hydrophobic–hydrophilic block copolymers were prepared by “living” anionic polymerization. They consist of polystyrene and poly(ethylene oxide) blocks, and are soluble in water. Their interfacial properties were investigated, employing aqueous solutions. The block copolymers lowered the surface tension of water in analogy with the low molecular weight surfactants such as sodium lauryl sulfate and heptaethylene oxide n-dodecyl ether. Their aqueous solutions exhibited solubilization properties differing from those of polyethylene glycol. Therefore, it is thought that the polystyrene blocks produce solubilization phenomena. In samples of the same styrene content, the precipitation temperature of a high molecular weight copolymer in water was lower than that of a low molecular weight copolymer at the same concentration in the same solvent. The surface tension and precipitation temperature of aqueous solutions seem to be influenced by molecular weight and composition.  相似文献   

2.
Interactions of water-soluble AB block copolymers of polystyrene and poly(ethylene oxide) with sodium lauryl sulfate (SLS) in aqueous solution were investigated by high-resolution proton magnetic resonance (NMR). The viscosity in aqueous SLS solution was also measured. From the NMR results in D2O, it appears that molecular motions of the polystyrene blocks of the copolymer in aqueous solution are activated by interaction between the polystyrene blocks and the added SLS. From solution viscosity, on the other hand, it is apparent that a complex is formed between the copolymer and SLS and that it exhibits typical polyelectrolyte properties. The polyelectrolyte character is attributable largely to intrachain repulsions between like charges of the SLS anions adsorbed on the poly(ethylene oxide) blocks of the copolymers since the polystyrene blocks are insoluble in water and the styrene content is less than 10%.  相似文献   

3.
Melting points have been measured for several ethylene oxide–propylene oxide block copolymers (sym-EPE) chosen from the Pluronic range. Melting points of the block copolymers are lower than those of the corresponding poly(ethylene oxide) homopolymer by up to 4°C. The melting point depressions are much smaller than those observed for comparable sym-PEP block copolymers.  相似文献   

4.
Melting points and lamellar thicknesses have been measured for ethylene oxide–propylene oxide block copolymers (sym-PEP) with central poly(ethylene oxide) block lengths of 70–100 chain units and end poly(propylene oxide) block lengths of 0–30 chain units. Melting points of the block copolymers are lower than those of the corresponding poly(ethylene oxide) homopolymer by an amount (up to 15°C) which increases as the poly(propylene oxide) block length increases. Most samples have more than one melting transition, which can be assigned to variously folded chain crystals. End interfacial free energies σe for the various crystals have been estimated by use of Flory's theory of melting of block copolymers. For a given crystal type (e.g., once-folded-chain) σe is higher the longer the chain length of the end poly(propylene oxide) blocks. For a given copolymer σe is lower, the more highly folded the poly(ethylene oxide) chain.  相似文献   

5.
To determine the behavior of a copolymer is dilute solution, a viscosity study has been performed on a polystyrene–polydimethylsiloxane block copolymer in three solvents presenting different thermodynamic conditions. The results are discussed in relation to a mixture of homopolymers and a segregated model. The unperturbed dimensions, obtained by the Stock–mayer–Fixman method, are intermediate between those of the parent homopolymers. The intrinsic viscosity measured in a good solvent, toluene, was close to the weighted averages of those of the corresponding homopolymers of equal molecular weight, but higher in decalin and in butanone, θ solvents for PS and PDMS, respectively. According to the low value obtained for the interaction parameter, the chain is slightly expanded as a result of the interactions between the unlike monomer units. Both segregation and random conformation would probably occur, depending on the quality of the solvent.  相似文献   

6.
Anionically prepared block copolymers of butadiene and styrene exhibit solution properties which result from a two-dimensional ordering of the polymer molecules. The most notable of these properties is the iridescent colors of toluene solutions which are dependent on concentration and abruptly change on mechanical deformation. Electron micrographs of the surface of cast films indicate that the ordered structure is retained to some degree in the solid state.  相似文献   

7.
The mechanism of craze initiation and growth and its relationship to mechanical properties has been studied in thin films of styrene–butadiene–styrene (SBS) block copolymers. Optical microscopy and transmission electron microscopy were used to examine three copolymers which has a spherical rubber domain morphology but varied in rubber content from 20 to 50%. With increasing rubber content, the crazes became longer and less numerous. Widening of the crazes was at least partially responsible for the higher strains achieved in the copolymers, especially for the composition with the highest rubber content where the crazes widened to form micronecks. Transmission electron microscopy revealed that craze initiation and growth at the craze tip occurred by cavitation in the polystyrene phase. Cavitation of the continuous phase rather than the rubber domains was attributed to the concentration of chain-end flaws in the polystyrene. Crazes in the block copolymers followed a meandering pathway and the boundaries between crazed and uncrazed material were indistinct. Incorporation of fibrillated rubber particles into the craze fibrils strengthened the craze. At higher rubber content, the craze widened in the stress direction by voiding and fibrillation, which produced a cellular morphology.  相似文献   

8.
In this study, solvent sorption was used to investigate the morphology of a styrene–butadiene–styrene (SBS) triblock copolymer. The sorption process was found to deviate from the normal Fickian character, usually found in conventional elastomer–solvent systems, because of the presence of an interfacial region for both polybutadiene and polystyrene. This interphase absorbed solvent at a temperature below its glass transition and contributed to the resulting non-Fickian time-dependent diffusion process. The equilibrium diffusion coefficient was estimated to be 3.2 × 10?7 cm2/sec regardless of the casting surface. Nevertheless, according to the sorption measurements, the casting surface did have an effect on the approach to equilibrium. The results indicated a denser packing of the molecules and hence a decreased diffusion coefficient for Teflon and glass cast films, because of internal stresses left within the films during casting.  相似文献   

9.
10.
A procedure for the preparation of new block copolymers composed of a hydrophobic block of polystyrene, a hydrophilic spacer-block of poly(ethylene oxide) and a bioactive block of heparin was investigated. Polystyrene with one amino group per chain was synthesized by free radical oligomerization of styrene in dimethylformamide, using 2-aminoethanethiol as a chain transfer agent. This amino group was used in the coupling reaction with amino-telechelic poly(ethylene oxide) to produce an AB type diblock copolymer with one amino group per polystyrene (PSt)–poly(ethylene oxide) (PEO) chain. The amino-semitelechelic oligo-styrene was converted into the isocyanate-semitelechelic oligo-styrene using toluene 2,4-diisocyanate and subsequent coupling with H2N–PEO–NH2 afforded AB type block copolymers with terminal amino groups. The coupling of PSt–PEO–NH2 with heparin was performed in a DMF–H2O mixture, first by activating the heparin carboxylic groups with EDC at pH 5.1–5.2 and subsequently reacting the activated carboxylic groups with the amino groups of the PSt–PEO–NH2 at pH 7.5. Depending on the molecular weights of the diblock copolymer used 25–29% w/w heparin was incorporated. These polymers will be further evaluated for their blood-compatibility.  相似文献   

11.
The melt rheological behavior of an anionically polymerized styrene–butadiene–styrene (SBS) block copolymer sample (S: 7 × 103 and B: 43 × 103) was studied using a Weissenberg rheogoniometer. Highly non-Newtonian behavior, high viscosity and high elasticity, which are characteristics of ABA type block copolymers, were observed at 125°C, 140°C, and 150°C. The data at these temperatures superimposed well onto a master curve giving a constant flow activation energy. However, the data at 175°C indicated a marked change in the flow mechanism between 150°C and 175°C. At 175°C, the sample showed Newtonian behavior, negligible elasticity, and deviation from the master curve. These findings may be considered as an indication that the SBS block copolymer sample undergoes a structural change from a multiphase structure at low temperatures into a homogeneous structure at some temperature between 150°C and 175°C.  相似文献   

12.
Dilute solution viscosity and osmotic pressure measurements were performed on polystyrene (PS), polybutadiene (PB), polystyrene–polybutadiene (SB) diblock and polystyrene–polybutadiene (SBS) triblock copolymers. Anionic polymerization was used in such a way that the molecular weight of the PS block was kept constant (ca. 10 000), while the molecular weight of the PB block varied from 18000 to 450000. The measurements were carried out at a fixed temperature of 34.20°C in three solvents, namely toluene, a good solvent for PS as well as for PB, dioxane, which is a good solvent for PS and almost a theta solvent for PB, and cyclohexane, which is nearly a theta solvent for PS and a good solvent for PB. The compositions of SB and SBS, as derived from kinetic data agree with ultraviolet measurements in CHCl3 solutions. The viscosity and osmotic pressure results indicate that the properties of SB and SBS are similar. Their intrinsic viscosities and second virial coefficients can be calculated from their chemical compositions, molecular weight, properties of parent polymers, and values of the interaction parameter \documentclass{article}\pagestyle{empty}\begin{document}$\bar \beta _{{\rm SB}}$\end{document} between styrene and butadiene units, for molecular weights not exceeding approximately 105. The magnitude of \documentclass{article}\pagestyle{empty}\begin{document}$\bar \beta _{{\rm SB}} $\end{document} varies with the solvent. The results suggest that the domains of the PS and PB blocks overlap to a great extent.  相似文献   

13.
Several narrow molecular weight distribution block copolymers were prepared by a two-stage anionic polymerization technique. Films cast from these solutions were studied by electron microscopy. Replicas showed that the film surfaces were composed of layered structures with various orientations. Micrographs of ultrathin sections of stained films demonstrate that layered structure occur throughout the film. The widths of the copolymer layer spacings increase with increasing molecular weight and agree quite well with the calculated values.  相似文献   

14.
Different series of poly(styrene–isoprene) diblock and poly(styrene–isoprene–styrene) triblock copolymers were prepared. In each series, the low molecular weight polystyrene block was kept constant, and the molecular weight of the polyisoprene block varied. The glass transition behavior of these polymers was studied and their glass transition temperatures compared with those of the random copolymers of styrene and isoprene. It is concluded that some low molecular weight styrene-isoprene block copolymers form a single phase. Krause's thermodynamic treatment of phase separation in block copolymers was applied to the data. One arrives at a polystyrene–polyisoprene interaction parameter χ1,2 ≈ 0.1. The experimental and theoretical limitations of this result are discussed.  相似文献   

15.
Three types of commercial styrene–acrylonitrile copolymer were fractionated by coacervate extraction and by column-elution techniques. Both methods were studied with two different solvent–nonsolvent pairs. Glass wool was used as the support material in the column. Fractionation by the coacervate extraction method was studied with benzene–triethylene glycol as a solvent–nonsolvent system at 60°C and with dichloromethane–triethylene glycol at 25°C. Column elution was carried out with acetone–methanol as the solvent–nonsolvent system at 30°C, and with dichloromethane–methanol at 20°C. Results of excellent reproducibility were obtained by these two methods. Characterization of fractions involved determination of both the molecular weight and chemical composition. It was established that the fractionation of the samples tested was dependent upon molecular weight only. The two methods described above are compared. Each gives an efficient procedure for fractionation of styrene–acrylonitrile copolymers.  相似文献   

16.
Styrene has been copolymerized at low conversion with minor quantities of p-divinyl-benzene (p-DVB) in (10–15%) solution in toluene and cyclohexane. Under these conditions the molecular weight of the polystyrene formed in the absence of p-DVB was controlled by chain transfer, and the copolymerization coefficients of the styrene and the p-DVB agreed with previous work. Polymer molecular weights were studied as a function of conversion. At very low conversions the number-average (2.2 × 105) and the weight-average (4.4 × 105) molecular weights were unaffected by substituting some of the styrene by p-DVB, but as the reaction continued M?n increased slowly and M?w much faster. On the other hand, even at the lowest conversions the intrinsic viscosity was drastically reduced by the introduction of p-DVB, and the radius of gyration, as measured by light scattering, fell. Infrared studies on the polymer show that the concentration of pendent double bonds in low-conversion copolymers is about half of the doubly substituted phenyl groups. It is concluded that the first polymer chains formed are extensively cyclized with the formation of a relatively large number of small rings.  相似文献   

17.
Compatibilization of polystyrene/polypropylene (PS/PP) blends, by use of a series of butadiene–styrene block copolymers was studied by means of small‐angle X‐ray scattering (SAXS) and transmission electron microscopy (TEM). The compatibilizers used differ in molar mass and the number of blocks. It was shown that the ability of a block copolymer (BC) to participate in the formation of an interfacial layer (and hence in compatibilization) is closely associated with the molar mass of styrene blocks. If the styrene blocks are long enough to form entanglements with the styrene homopolymer in the melt, then the BC is trapped inside this phase of the PS/PP blends, and its migration to the PS/PP interface is difficult. In this case, the BC does not participate in the formation of the interfacial layer nor, consequently, in the compatibilization process. On the other hand, the BC's with the molar mass of the PS blocks below the critical value are proved to be localized at the PS/PP interface. This preferable entrapping of some styrene–butadiene BC's in the PS phase of the PS/PP blend is, of course, connected to the differing miscibility of the BC blocks with corresponding components of this blend. Although the styrene block is chemically identical to the styrene homopolymer in the blend, the butadiene block is similar to the PP phase. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1647–1656, 1999  相似文献   

18.
The heat of fusion of poly(ethylene oxide) blocks has been measured by DSC on twelve polystyrene–poly(ethylene oxide) multiblock (AB)n copolymers and two ABA triblock copolymers after conditioning at various times and temperatures. Regardless of the length of polystyrene blocks, copolymers with poly(ethylene oxide) blocks with M?n = 404 showed no heat of fusion, those with M?n = 900 almost no peaks, those with M?n = 1960 small broad peaks, and those with M?n = 5650 clearly observable peaks. the greatest heat of fusion measured for block copolymers was 60–70% of the value for hompolymer. Small-angle x-ray patterns are given. The relation between crystal growth and block length is discussed.  相似文献   

19.
In this study di‐ and triblock copolymers of ethylene oxide (EO) and propylene oxide (PO) are analyzed by using CAP for one block and adsorption for the other block. This gives a complete picture of EO‐ and PO‐based block copolymer with respect to the oligomers of both blocks. A full resolution of the individual oligomers can be achieved for both blocks up to an average molecular weight of 1000–1500 of each block.  相似文献   

20.
Poly(vinyl chloride)-poly(ethylene oxide) block copolymers have been synthesized in solution and emulsion. The polymers were made by first synthesizing macroazonitriles through the reaction of 4,4′-azobis-4-cyanovleryl chloride with hydroxy-terminated poly(ethylene oxide) of varying molecular weights. These macroazonitriles had molecular weights in the range of 3000–88,000 and degrees of polymerization from 5 to 24. Thermal decomposition of the azolinkages in the presence of vinyl chloride monomer yielded block copolymers containing form 2 to 20 wt % poly(ethylene oxide). The structures of the block copolymers were characterized by spectrometric, elemental and molecular weight analyses. The possibility of some graft polymerization occurring via free-radical extraction of a methylene hydrogen from the poly(ethylene oxide) was considered. Polymerization of vinyl chloride with an azonitrile initiator in the presence of a poly(ethylene oxide) yielded predominately homopolymer with some grafted poly(vinyl chloride).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号