首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
建立了一种简单实用、经济高效的以取代2-碘芳胺和N,N-二甲基氨基硫代甲酰氯为原料,以碘化亚铜为催化剂,吡啶为溶剂,100 ℃条件下,串联合成2-(N,N-二甲氨基)苯并噁唑衍生物的微波催化体系,合成了一系列中等至良好产率的2-(N,N-二甲氨基)苯并噁唑衍生物,最高产率达90%。  相似文献   

2.
聚酰亚胺(PI)薄膜作为柔性有机发光显示(OLED)基板材料应用时, 需要满足玻璃化转变温度(Tg)大于450 ℃和热膨胀系数(CTE)在0~5×10-6 K-1之间. 为了提高PI薄膜的热性能, 本文合成了2,7-占吨酮二胺 (2,7-DAX), 并将其与均苯四甲酸二酐(PMDA)和2-(4-氨基苯基)-5-氨基苯并噁唑(BOA)共聚制备了一系列新型PI薄膜. 研究了PI薄膜的聚集态结构、 耐热性能、 尺寸稳定性和力学性能. 结果表明, 占吨酮结构和苯并噁唑结构提高了PI分子链的刚性与线性, 使分子链在平面内紧密堆积与取向, 制备的PI薄膜综合性能优异, 玻璃化转变温度高于408 ℃, CTE在-5.0×10-6~8.1×10-6 K-1之间, 拉伸强度大于140 MPa, 拉伸模量大于4.2 GPa, 断裂伸长率为7.1%~20%, 5%热失重分解温度(T5%)在601~624 ℃之间. 其中, PI-50和PI-60薄膜具有超高玻璃化转变温度和超低热膨胀系数, Tg高于450 ℃, CTE分别为2.1×10-6 K-1和1.6×10-6 K-1. 制备的系列PI薄膜作为柔性OLED基板材料有潜在应用前景.  相似文献   

3.
通过分子设计合成了一种含叔丁基、醚键和双酚A单元的二胺单体2,2-二(3'-叔丁基-4'-氨基二苯醚-4-基)丙烷(4),然后将其与4种商品化的芳香二酐单体:联苯四羧酸二酐(BPDA)、二苯醚四酸二酐(OPDA)、二苯六氟异丙基四酸二酐(6FDA)和均苯四酸二酐(PMDA)经高温"一步法"制备了一系列新型聚酰亚胺(PI)树脂,并对它们的结构与性能进行了研究.结果表明,该系列PI在NMP、DMF、DMAc、THF和CHCl3等普通有机溶剂中具有良好的溶解性;玻璃化转变温度Tg(DSC)在265~302℃之间,5%热失重温度(N2氛围)在519℃以上;在400~760 nm可见光波长范围内,具有优异的光学透明性,透光率约等于或大于90%;PI的数均分子量(Mn,GPC)在1.90×10~4~3.90×10~4范围内,分子量分布(PDI)介于2.63~4.63之间,X-射线衍射(XRD)结果表明所得PI为无定形聚合物,吸水率低于0.5%.叔丁基、醚键和双酚A单元同时引入具有协同效应,可提高PI的溶解性和透明性,并保持PI原有良好的热稳定性、机械性能和较低的吸水率.  相似文献   

4.
报道了4个含苯甲酰胺取代的水杨醛亚胺配体: N-(2-苯甲酰胺苯基)-水杨醛亚胺(L1)、 N-(2-苯甲酰胺苯基)-3-甲基水杨醛亚胺(L2)、 N-(2-苯甲酰胺苯基)-3-叔丁基水杨醛亚胺(L3)和N-(2-苯甲酰胺苯基)-3,5-二溴水杨醛亚胺(L4)的合成, 采用 1H NMR和HRMS对其结构进行了表征. 在助催化剂甲基铝氧烷(MAO)作用下, 以L3与TiCl4·2THF为模型催化体系, 在最佳陈化条件(陈化温度为25 ℃, 陈化时间为30 min, 配体与TiCl4·2THF的摩尔比3∶1)下, 考察了L1~L4/TiCl4·2THF催化体系Al/Ti摩尔比、 反应时间、 反应温度和聚合压力, 以及配体结构等对乙烯聚合的影响. 结果表明, 随着在水杨醛骨架上氧原子邻位取代基位阻的增大, 催化体系的活性及所得聚乙烯的分子量均有增加, 其中以L3的催化活性最高, 达到224 kg PE/(mol Ti?h). 采用高温 1H NMR, 13C NMR, GPC-IR和DSC等对由不同配体L1~L4/TiCl4·2THF得到的聚乙烯样品的微观结构与热性能进行了分析与表征, 结果显示样品为线性高密度聚乙烯, Mn=5.9×10 4~11.9×10 4, 分子量分布(PDI)为21.9~72.1.  相似文献   

5.
采用高温“一步法”缩聚合成了一系列含叔丁基的可溶性芳香聚酰亚胺树脂, 然后通过溶液浇注法制得相应均质薄膜, 并对其气体分离性能进行了测试, 同时研究了二酐结构和温度对聚酰亚胺均质膜气体分离性能的影响. 结果表明, 对于H2, N2, O2, CO2和CH4 等5种气体, 含叔丁基聚酰亚胺均质膜不仅表现出良好的透气性, 而且具有较高的气体透过选择性, 4,4'-(六氟异丙烯)二酞酸酐(6FDA)和均苯四甲酸二酐(PMDA)两类聚酰亚胺均质膜的气体分离性能最佳. 除CO2外, 这两类聚酰亚胺均质膜的气体渗透系数随温度升高而升高, 而所有测试气体在这两种均质膜中的扩散系数和溶解度系数均随温度升高而增大.  相似文献   

6.
采用一步法合成了一系列侧链含偶氮三嗪发色团的新型含氟聚酰亚胺FPI(x),并研究其溶解性能、热性能以及光学性能.该系列聚酰亚胺具有优良的溶解性能,不仅溶于NMP,DMAc,DMF,DMSO等强极性非质子性溶剂,而且还溶于THF和乙二醇单甲醚等低沸点溶剂.FPI(x)系列共聚聚酰亚胺具有较高的玻璃化转变温度(Tg,在544~562K之间),且与主链中染料发色团的含量无关.所有聚酰亚胺都表现出优良的高温稳定性,其5%热失重温度(T5)比Tg高出100K以上,基本能满足电场极化对聚合物材料热稳定性的要求.另外,FPI(x)系列聚酰亚胺的紫外截止吸收波长小于500nm,即在大于500nm波长范围内基本透明.其面内折光指数nTE随着染料发色团含量的增加而逐渐增加.  相似文献   

7.
高折射率高透明性半脂环聚酰亚胺的合成与性能   总被引:1,自引:0,他引:1  
采用脂环二酐单体2,3,5-三羧基环戊烷基乙酸二酐(TCAAH)分别与两种含硫芳香族二胺单体,4,4′-双(4-氨基苯硫基)二苯硫醚(3SDA)与2,7-双(4-氨基苯硫基)噻蒽(APTT)通过两步法制备了两种半脂环聚酰亚胺(PI).制备的PI薄膜在可见光波长范围内(400~700 nm)具有优良的透明性,400 nm处的透过率超过85%.此外,该系列薄膜还具有良好的耐热稳定性,氮气中的起始热分解温度超过480℃,玻璃化转变温度超过250℃.PI薄膜在632.8 nm处的折射率大于1.68,双折射小于0.006.为了进一步提高PI薄膜的折射率,初步考察了PI前体溶液聚酰胺酸(PAA)与高折射率无机TiO2纳米粒子的复合工艺.结果表明,PI-TiO2薄膜同样具有良好的透明性,632.8 nm处的折射率达到1.76.  相似文献   

8.
贾晓燕  李振环 《化学学报》2020,78(6):540-546
以碳酸二甲酯(DMC)代替光气,一锅法合成α-氨基酸-N-羧酸酐(NCAs)是实现绿色制备多肽的重要途径.制备了酸碱协同催化剂NaZnPO4,用该催化剂催化DMC和丙氨酸"一锅法"合成N-羧基丙氨酸酸酐(Ala-NCA).在N,N-二甲基甲酰胺(DMF)溶剂中,150℃的反应条件反应8 h时,Ala-NCA的收率最高为46.84%,催化剂循环5次后收率仍达38.62%.NaZnPO4中Zn2+和O-Na具有有效的酸碱协同催化作用,在反应过程中具有去质子化、精准酰基化和高效成环的作用.利用TG-MS-IR技术研究了催化剂表面上原料转化和中间体精准关环过程,并提出了可能的反应催化机理.  相似文献   

9.
采用含叔丁基二胺的单体3,3′-二叔丁基-4,4′-二氨基二苯基-4″-叔丁基苯基甲烷(TADBP)分别与萘-1,4-二甲酸、间苯二甲酸和4,4-二苯醚二甲酸3种二酸单体通过Yamazaki膦酰化法缩聚制得一系列新型可溶性芳香聚酰胺(PA)。通过FT-IR、~1 H-NMR、TG、DSC等测试手段研究了含叔丁基芳香聚酰胺的结构与性能,以及聚合物结构对其溶解性能、热性能的影响。结果表明:PA具有优异的溶解性能,常温下不仅能溶于高沸点的N-甲基吡咯烷酮(NMP)、N,N-二甲基乙酰胺(DMAc)、N,N-二甲基甲酰胺(DMF)、二甲基亚砜(DMSO)等强极性溶剂中,加热条件下甚至能溶于四氢呋喃、氯仿、二氯甲烷等低沸点溶剂;同时,PA还具有良好的热性能,玻璃化转变温度(Tg)为188~193℃,氮气氛围下失重5%和10%时的热失重温度分别为391~416℃和404~437℃。  相似文献   

10.
在三联吡啶分子中引入N,N-二甲基官能团, 实现了三联吡啶分子的局部激发态发光. 研究发现, 溶剂的极性诱导三联吡啶的偶极矩发生变化, 实现了从深蓝光(λmax=384 nm)到黄光(λmax=558 nm)的溶剂致荧光变色. 由于三联吡啶的荧光易受醇溶剂中—OH基团振荡猝灭, 不同空间位阻的正丁醇、 异丁醇、 仲丁醇及叔丁醇溶剂使得三联吡啶发光光色相近, 但发光强度的差异较大. 三联吡啶进一步与ZnCl2配位得到了三联吡啶-Zn(Ⅱ)配合物, 金属离子Zn(Ⅱ)的配位作用促进了三联吡啶分子内电荷转移. 由于电子给体N,N-二甲基官能团可发生平面扭曲, 丁醇异构体可调节三联吡啶-Zn(Ⅱ)的局部激发态和扭曲分子内电荷转移发光, 进而实现其在丁醇异构体溶剂中发光光色的调节. 因此, 三联吡啶和三联吡啶-Zn(Ⅱ)具有良好的溶剂致荧光变色性能, 可应用于4种丁醇异构体的鉴别.  相似文献   

11.
以2-萘基吡啶(npy)为主配体,N,N-二苯基-4-[4-苯基-5-(吡啶-2-基)-4H-1,2,4-三唑-3-基]苯胺(DPPTA)为辅助配体,合成了含有三苯胺-三唑双极性结构单元的橙红光阳离子型有机铱(Ⅲ)配合物[(npy)2Ir(DPPTA)]PF6.该配合物的热分解温度高达345℃,从20℃升温到100℃时,相对发光强度衰减28.0%,发光颜色稳定.其所含的双极性结构单元使其能有效地吸收Ga N芯片的蓝光(λem,max=455 nm),进而可被蓝光高效激发.以Ga N蓝光芯片作为激发光源,[(npy)2Ir(DPPTA)]PF6为下转换发光材料,可以制得橙红光LEDs;进一步与黄光材料Y3Al5O12∶Ce3+(YAG:Ce3+)联用,可以制得高效的中性白光和暖白光LEDs.  相似文献   

12.
通过N-乙烯基咪唑鎓离子液体、 丙烯酸钠(NaAA)和交联剂二乙烯基苯(DVB)或1-乙烯基-3-三乙二醇基咪唑溴盐{[(EG)3-DVIm]Br2)}自由基聚合合成了一系列含羧酸根的聚离子液体. 将所合成的聚离子液体用于催化甲醇与碳酸乙烯酯(EC)酯交换反应制备碳酸二甲酯(DMC). 研究结果表明, 在甲醇和EC混合溶剂中具有最大溶胀度的聚离子液体催化剂poly[VOIm-AA-DVIm]活性最高. 在优化反应条件[120 ℃, 6 h, 1.0%(摩尔分数)催化剂用量, n(甲醇)/n(EC)=10∶1]下, DMC收率为76.6%, 选择性为90.1%, 达到了与均相催化剂1-丁基-3-甲基咪唑醋酸盐([BMIm]OAc)相当的活性.  相似文献   

13.
报道了钯催化下炔丙醇与叔丁基异腈反应高选择性合成吡咯并呋喃衍生物和氨基甲酸酯的新方法.在10%(摩尔分数)Pd(OAc)2与110%(摩尔分数)LiBr存在下,一分子炔丙醇与三分子叔丁基异腈在水的参与下发生“有序的”异腈三重插入反应,以56%~73%的产率高选择性地生成了吡咯并呋喃衍生物;而在10%(摩尔分数)Pd(PPh3)4和110%(摩尔分数)K3PO4存在下,一分子炔丙醇与一分子叔丁基异腈在空气中氧气的参与下发生简单氧化偶联反应,以51%~74%的产率生成了氨基甲酸酯.该方法仅通过简单改变钯催化剂与盐的种类就能得到不同产物,且反应选择性高,分别为吡咯并呋喃亚胺衍生物和氨基甲酸酯提供了有吸引力的合成途径.  相似文献   

14.
选用非质子型有机溶剂聚乙二醇二甲醚(NHD)与N, N-二甲基乙酰胺(DMAC), 分别与BmimFeCl4复配, 构建了BmimFeCl4/NHD和BmimFeCl4/DMAC复合铁基离子液体体系. 考察了温度、 BmimFeCl4/溶剂的质量 比以及压力对CO2在复合铁基离子液体体系中溶解行为的影响. 结果表明, 高压低温的吸收条件更利于CO2 的溶解, 当BmimFeCl4/DMAC质量比为7∶3时, CO2在BmimFeCl4/DMAC复合体系中的亨利系数为0.9181 MPa·L·mol-1, 低于同等条件下BmimFeCl4/NHD体系的亨利系数. 在常压、 363.2 K条件下进行再生, 经5次循环后, CO2在BmimFeCl4/NHD和BmimFeCl4/DMAC中的溶解度分别为初次吸收量的92.53%和99.04%. 傅里叶变换红外光谱(FTIR)结果表明, 铁基离子液体复配体系吸收CO2为物理吸收过程. 密度泛函理论(DFT)计算与IRI分析的结果表明, 在复配DMAC的体系中, CO2更倾向与阳离子和溶剂分子作用, 而在复配NHD的体系中, CO2则更容易与阴离子和溶剂分子作用.  相似文献   

15.
以有机小分子4,9-二(5-9H-芴-2-基-噻吩-2-基)-6',7-联苯[1,2,5]噻二唑并[3,4-g]喹喔啉(TQF)为前驱体, 通过化学方法将其修饰为可引发可逆加成-断裂链转移聚合(RAFT)反应的小分子链转移剂TQF-苯基硫代链 转移剂(CTA). 以TQF-CTA为链转移剂, 以偶氮二异丁腈为引发剂, 引发N-异丙基丙烯酰胺(NIPAAm)和 甲基丙烯酸寡聚乙二醇酯(OEGMA)发生RAFT聚合反应, 合成了具有良好水溶性和较低临界溶解温度(LCST)的小分子基共聚物[TQF-P(NIPAAm-co-OEGMA), TPNO]. 将其直接溶于水中可制备成温敏的球形纳米粒子 TPNO NPs. 研究结果表明, TPNO NPs在温度大于LCST(35 ℃)时表现出一个明显的粒径变化和显著的荧光 增强行为(2.2倍), 并成功实现了对活体小鼠血管与肿瘤的明亮近红外二区(NIR-Ⅱ)荧光成像(FI). 同时, TPNO NPs有着良好的光热转换效率(PCE=29.8%), 通过体外细胞实验证明了其对细胞具有较好的光热治疗(PTT)效果.  相似文献   

16.
利用水热法和直接沉淀法, 设计合成了5例由过渡金属(TM)-联咪唑配阳离子与Dawson型钨磷酸阴离子构成的多金属氧酸盐(POM)基有机-无机杂化化合物[Ni(H2biim)3]4[Ni(H2biim)2(P2W18O62)2]·2H2O(1), [CoIII(H2biim)3]2[P2W18O62]·8H2O(2), [Cu(H2biim)2]3[P2W18O62]·4H2O(3), [CoII(H2biim)3]2H2[P2W18O62]·9H2O(4)和 [Ni(H2biim)3]3[P2W18O62]·2H2O(5); 并利用X射线单晶衍射分析(SC-XRD)、 红外光谱(IR)和热重-差热分析 (TG-DTA)等对其进行了表征. 化合物1~5作为载体用于固定辣根过氧化物酶(HRP)时, 显示出了较高的酶固定化能力. 另外, 利用圆二色光谱(CD)和激光扫描共聚焦显微镜(LSCM)等方法评价了固定化酶HRP/1~HRP/5的重复使用性、 储存稳定性和检测过氧化氢(H2O2)的性能. 由于该类POMs与HRP间存在强的相互作用, 利用简单的物理吸附法即可实现POMs对HRP的固载. POMs对酶的固定不但提高了HRP对使用及储存环境的耐受性, 同时也拓展了POMs在酶固定化领域的应用.  相似文献   

17.
质子交换膜燃料电池(PEMFC)因能量转化率高、 污染小、 工作温度低、 启动速度快而被广泛应用. Nafion系列膜成本高、 结构特性模糊, 阻碍了质子传导性能的进一步提高和对传导机理的精确理解. 因此开发具有结构明确、 传导路径清晰的高质子传导率的晶态材料对于燃料电池领域具有重要意义. 本文利用有机配体5-羟基间苯二甲酸作为模板诱导[Mo2S2O2]2+阳离子, 自组装成一种多核多氧硫钼酸盐簇[N(CH3)4]2H2· [(Mo2S2O2)8(OH)16(C8O5H4)2]·22H2O(Mo16). 该化合物清晰明确的结构和结构中存在的密集氢键网络可用于进行质子传导性能的研究. 交流阻抗测试结果表明, Mo16在宽温度范围内具有较高的质子传导性能. 在97%湿度(RH), 85 ℃条件下其质子传导率可达1.9×10-2 S/cm, 表明该化合物具有作为高效质子导体的良好前景.  相似文献   

18.
由硝酸锌、 吡唑-3,5-二羧酸(H3pzdc)和2-氨基对苯二甲酸(H2abdc)在溶剂热条件下反应得到一种多孔配位聚合物(Me2NH2)[Zn2(pzdc)(abdc)]·H2O·DMF(1·g), 其中Me2NH2+由溶剂N,N-二甲基甲酰胺(DMF)水解得到, 1可视为平行排列的平整带状{Zn2(pzdc)}+链被abdc2-柱子交错支撑而成的三维多孔框架. 通过脱附/吸附溶剂分子, 中心对称的配位聚合物1·g可以可逆转变成手性的(Me2NH2)[Zn2(pzdc)(abdc)](1′). 单晶结构分析表明, 在客体响应过程中, 基于框架、 抗衡离子和客体分子之间的氢键协作与竞争, 抗衡离子发生了显著的移动 和转动, 导致{Zn2(pzdc)}+链扭曲和转动, 伴随着超过10%的晶胞体积和孔洞率变化. 气体吸附测试表明, 化合物1'对N2和CO2存在不同的结构响应行为.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号