首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Solvation dynamics in four imidazolium cation based room temperature ionic liquids (RTIL) have been calculated by using the recently measured dielectric relaxation data [ J. Phys. Chem. B 2008, 112, 4854 ] as an input in a molecular hydrodynamic theory developed earlier for studying solvation energy relaxation in polar solvents. Coumarin 153 (C153), 4-aminophthalimide (4-AP), and trans-4-dimethylamino-4'-cyanostilbene (DCS) have been used as probe molecules for this purpose. The medium response to a laser-excited probe molecule in an ionic liquid is approximated by that in an effective dipolar medium. The calculated decays of the solvent response function for these RTILs have been found to be biphasic and the decay time constants agree well with the available experimental and computer simulation results. Also, no probe dependence has been found for the average solvation times in these ionic liquids. In addition, dipolar solvation dynamics have been predicted for two other RTILs for which experimental results are not available yet. These predictions should be tested against experiments and/or simulation studies.  相似文献   

2.
The solvation effect of the ionic liquid 1-N-butyl-3-methylimidazolium hexafluorophosphate on nucleophilic substitution reactions of halides toward the aliphatic carbon of methyl p-nitrobenzenesulfonate (pNBS) was investigated by computer simulations. The calculations were performed by using a hybrid quantum-mechanical/molecular-mechanical (QM/MM) methodology. A semiempirical Hamiltonian was first parametrized on the basis of comparison with ab initio calculations for Cl(-) and Br(-) reaction with pNBS at gas phase. In condensed phase, free energy profiles were obtained for both reactions. The calculated reaction barriers are in agreement with experiment. The structure of species solvated by the ionic liquid was followed along the reaction progress from the reagents, through the transition state, to the final products. The simulations indicate that this substitution reaction in the ionic liquid is slower than in nonpolar molecular solvents proper to significant stabilization of the halide anion by the ionic liquid in comparison with the transition state with delocalized charge. Solute-solvent interactions in the first solvation shell contain several hydrogen bonds that are formed or broken in response to charge density variation along the reaction coordinate. The detailed structural analysis can be used to rationalize the design of new ionic liquids with tailored solvation properties.  相似文献   

3.
The mechanism of isomerization of allyl thiocyanate to allyl isothiocyanate has been investigated both experimentally and theoretically. The kinetic study indicates that the reaction is unimolecular and is not ionic. The entropy of activation suggests strongly that the mechanism involves a cyclic transition state. The rate of reaction was retarded to a small extent in polar solvents relative to that in nonpolar solvents. Ab initio MO calculations indicate, in agreement with the experimental results, that the reaction proceeds through a cyclic transition state, one in which the SCN moiety is almost linear. Thus, this is a [3,3] sigmatropic rearrangement. The charge separation in the transition state was substantial. The retardation of the reaction in polar solvents was attributed to the difference in solvation in the original state and in the transition state. © 1997 John Wiley & Sons, Inc.  相似文献   

4.
An analysis is provided of the subnanosecond dynamic solvation of ionic liquids in particular and ionic solutions in general. It is our hypothesis that solvation relaxation in ionic fluids, in the nonglassy and nonsupercooled regimes, can be understood rather simply in terms of the dielectric spectra of the solvent. This idea is suggested by the comparison of imidazolium ionic liquids with their pure organic counterpart, butylimidazole (J. Phys. Chem. B 2004, 108, 10245-10255). It is borne out by a calculation of the solvation correlation time from frequency dependent dielectric data for the ionic liquid, ethylammonium nitrate, and for the electrolyte solution of methanol and sodium perchlorate. Very good agreement is obtained between these theoretically calculated solvation relaxation functions and those obtained from fluorescence upconversion spectroscopy. Our comparisons suggest that translational motion of ions may not be the predominant factor in short-time solvation of ionic fluids and that many tools and ideas about solvation dynamics in polar solvents can be adapted to ionic fluids.  相似文献   

5.
Steady-state and time-resolved emission spectroscopy with 25 ps resolution are used to measure equilibrium and dynamic aspects of the solvation of coumarin 153 (C153) in a diverse collection of 21 room-temperature ionic liquids. The ionic liquids studied here include several phosphonium and imidazolium liquids previously reported as well as 12 new ionic liquids that incorporate two homologous series of ammonium and pyrrolidinium cations. Steady-state absorption and emission spectra are used to extract solvation free energies and reorganization energies associated with the S0 <--> S1 transition of C153. These quantities, especially the solvation free energy, vary relatively little in ionic liquids compared to conventional solvents. Some correlation is found between these quantities and the mean separation between ions (or molar volume). Time-resolved anisotropies are used to observe solute rotation. Rotation times measured in ionic liquids correlate with solvent viscosity in much the same way that they do in conventional polar solvents. No special frictional coupling between the C153 and the ionic liquid solvents is indicated by these times. But, in contrast to what is observed in most low-viscosity conventional solvents, rotational correlation functions in ionic liquids are nonexponential. Time-resolved Stokes shift measurements are used to characterize solvation dynamics. The solvation response functions in ionic liquids are also nonexponential and can be reasonably represented by stretched-exponential functions of time. The solvation times observed are correlated with the solvent viscosity, and the much slower solvation in ionic liquids compared to dipolar solvents can be attributed to their much larger viscosities. Solvation times of the majority of ionic liquids studied appear to follow a single correlation with solvent viscosity. Only liquids incorporating the largest phosphonium cation appear to follow a distinctly different correlation.  相似文献   

6.
A theoretical study of the effects of ion atmosphere relaxation on the rate of a model dipole isomerization reaction in electrolyte solutions is presented. The time-dependent ion atmosphere friction is calculated by using a molecular hydrodynamic theory which properly includes the static and dynamic interionic correlations through ionic structure factors and van Hove functions. The rate constant is determined by employing the well-known Grote-Hynes theory. Numerical results are obtained for the time-dependent ion atmosphere friction and for the rate of isomerization reaction in electrolyte solutions of varying ion concentration and dielectric constant. It is found that the ion atmosphere friction can have significant effects in reducing the rate of isomerization below the prediction of equilibrium solvation transition state theory.  相似文献   

7.
Room temperature ionic liquids are novel solvents with favorable environmental and technical features. Synthetic routes to over 200 room temperature ionic liquids are known but for most ionic liquids physicochemical data are generally lacking or incomplete. Chromatographic and spectroscopic methods afford suitable tools for the study of solvation properties under conditions that approximate infinite dilution. Gas-liquid chromatography is suitable for the determination of gas-liquid partition coefficients and activity coefficients as well as thermodynamic constants derived from either of these parameters and their variation with temperature. The solvation parameter model can be used to define the contribution from individual intermolecular interactions to the gas-liquid partition coefficient. Application of chemometric procedures to a large database of system constants for ionic liquids indicates their unique solvent properties: low cohesion for ionic liquids with weakly associated ions compared with non-ionic liquids of similar polarity; greater hydrogen-bond basicity than typical polar non-ionic solvents; and a range of dipolarity/polarizability that encompasses the same range as occupied by the most polar non-ionic liquids. These properties can be crudely related to ion structures but further work is required to develop a comprehensive approach for the design of ionic liquids for specific applications. Data for liquid-liquid partition coefficients is scarce by comparison with gas-liquid partition coefficients. Preliminary studies indicate the possibility of using the solvation parameter model for interpretation of liquid-liquid partition coefficients determined by shake-flask procedures as well as the feasibility of using liquid-liquid chromatography for the convenient and rapid determination of liquid-liquid partition coefficients. Spectroscopic measurements of solvatochromic and fluorescent probe molecules in room temperature ionic liquids provide insights into solvent intermolecular interactions although interpretation of the different and generally uncorrelated "polarity" scales is sometimes ambiguous. All evidence points to the ionic liquids as a unique class of polar solvents suitable for technical development. In terms of designer solvents, however, further work is needed to fill the gaps in our knowledge of the relationship between ion structures and physicochemical properties.  相似文献   

8.
We have developed a simple and quantitative explanation for the relatively low melting temperatures of ionic liquids (ILs). The basic concept was to assess the Gibbs free energy of fusion (Delta(fus)G) for the process IL(s) --> IL(l), which relates to the melting point of the IL. This was done using a suitable Born-Fajans-Haber cycle that was closed by the lattice (i.e., IL(s) --> IL(g)) Gibbs energy and the solvation (i.e., IL(g) --> IL(l)) Gibbs energies of the constituent ions in the molten salt. As part of this project we synthesized and determined accurate melting points (by DSC) and dielectric constants (by dielectric spectroscopy) for 14 ionic liquids based on four common anions and nine common cations. Lattice free energies (Delta(latt)G) were estimated using a combination of Volume Based Thermodynamics (VBT) and quantum chemical calculations. Free energies of solvation (Delta(solv)G) of each ion in the bulk molten salt were calculated using the COSMO solvation model and the experimental dielectric constants. Under standard ambient conditions (298.15 K and 10(5) Pa) Delta(fus)G degrees was found to be negative for all the ILs studied, as expected for liquid samples. Thus, these ILs are liquid under standard ambient conditions because the liquid state is thermodynamically favorable, due to the large size and conformational flexibility of the ions involved, which leads to small lattice enthalpies and large entropy changes that favor melting. This model can be used to predict the melting temperatures and dielectric constants of ILs with good accuracy. A comparison of the predicted vs experimental melting points for nine of the ILs (excluding those where no melting transition was observed and two outliers that were not well described by the model) gave a standard error of the estimate (s(est)) of 8 degrees C. A similar comparison for dielectric constant predictions gave s(est) as 2.5 units. Thus, from very little experimental and computational data it is possible to predict fundamental properties such as melting points and dielectric constants of ionic liquids.  相似文献   

9.
Although many ionic liquids have been reported, their polarity is not completely understood. Different empirical polarity scales for molecular solvents always lead to different polarity orders when they are applied on ionic liquids. Based on a literature survey, this review summarizes the recent polarity scales of ionic liquids according to the following 4 classes: (1) equilibrium and kinetic rate constants of chemical reactions; (2) empirical polar parameters of ionic liquids; (3) spectral properties of probe molecules; (4) multiparameter approaches. In addition, their interrelations are presented. A systematic understanding of the relationship between different polarity parameters of ionic liquids is of great importance for finding a universal set of parameters that can be used to predict the polarities of ionic liquids quantitatively. The potential utilization of the electron paramagnetic resonance in this field is also addressed.  相似文献   

10.
We have measured the dynamics of solvation of a triplet state probe, quinoxaline, in the glass-forming ionic liquid dibutylammonium formate near its glass transition temperature Tg=153 K. The Stokes-shift correlation function displays a relaxation time dispersion of considerable magnitude and the optical line width changes systematically along the solvation coordinate. The solvent dynamics in the viscous regime is compared with the rotational behavior of the solute and with the dielectric relaxation of the ionic liquid. Among the different quantities derived from the dielectric experiments, the relaxation of the macroscopic electric field, i.e., the modulus Mt, matches best the solvent response Ct regarding time scale and stretching exponent. Many other properties are reminiscent of the behavior of polar molecular liquids which lack the ionic character.  相似文献   

11.
The activation parameters and optimized structures of the reactants and transition states in the S(N)2 reactions of substituted pyridines and N,N-dimethylanilines with methyl iodide were computed at the DFT level in different solvents. The measured and calculated deltaG/deltaH/deltaS versus sigma plots proved to be linear, and their slopes, the deltadeltaG, deltadeltaH, and deltadeltaS reaction constants, were determined. The least solvent-dependent deltadeltaG reaction constants can be computed with acceptable accuracy. The calculated deltadeltaS data decrease only very slightly with the jointly increasing electron-withdrawing effect of the substituents and tightness of the transition states. The measured deltadeltaS values are influenced mainly by the change of solvation in the reactions, and deltadeltaH is also influenced by the reorganization of the solvent. Consequently, the experimental and calculated deltadeltaS and deltadeltaH reaction constants may deviate considerably from each other. In dipolar aprotic solvents the measured deltadeltaS was less than zero, and in protic solvents it was greater than zero. The ordering of the solvent molecules around the transition state with increasing charge is increased in the former but decreased in the latter media, as compared to the bulk of the solvents. The calculated deltaG(o), deltaH(o), and deltaS(o) parameters of the unsubstituted compounds agree relatively well with the experimental data for reactions of neutral molecules in dipolar aprotic solvents (e.g., XC6H4N(CH3)2 + CH3I). On the other hand, the measured and calculated activation parameters may show considerable deviations for reactions of ions (e.g., XC5H4NCH3+ + I-) and for any reaction in protic solvents.  相似文献   

12.
Coating of azobenzene chromophore with multivalent sugar ligands has been accomplished. Such sugar coating allows the study of the isomerization properties of this chromophore in aqueous solutions. The predominantly cis-isomer-containing photostationary state (PS) mixture of these azobenzene derivatives is found to be stable for hours. The rate constants for their isomerization, as well as the Arrhenius activation energies, are determined experimentally. An assessment of the lectin binding properties of the lactoside bearing isomeric azobenzene derivatives, by isothermal calorimetric methods, reveals the existence of an unusual cooperativity in their binding to lectin peanut agglutinin. Thermodynamic parameters evaluated for the trans and the PS mixture are discussed, in detail, for the lactoside bearing bivalent azobenzene derivative.  相似文献   

13.
离子液体在有机反应中的应用   总被引:31,自引:4,他引:31  
室温离子液体,由含氮的有机阳离子和无机阴离子组成,可溶解各种有机、无 机、金属有机化合物。它们没有蒸气压、不易燃、容易循环使用。近年已发现,离 子液体可广泛地用于许多过渡金属化合物和酶催化的反应。着重讨论这方面的发展 状况。  相似文献   

14.
The solvation of the protein ubiquitin (PDB entry "1UBQ") in hydrated molecular ionic liquids was studied for varying water content or, equivalently, a diversity of ionic strengths. The cations and anions were 1-ethyl-3-methylimidazolium and trifluoromethanesulfonate, respectively. The protein's shape and stability as well as the solvation structure, the shell dynamics and the shell resolved dielectric properties were investigated by means of molecular dynamics simulations. The respective simulation trajectories covered 200 nanoseconds. Besides the characteristic point already found for the zinc finger motif at the transition from the pure aqueous environment to the ionic solution an even more pronounced state is found where several properties show extremal behaviour (maximum or minimum). This second characteristic point occurs at the transition from the ionic solution to the hydrated ionic melt where water changes its role from a solvent to a co-solvent. Most of the data analysis presented here is based on the Voronoi decomposition of space.  相似文献   

15.
Han X  Armstrong DW 《Organic letters》2005,7(19):4205-4208
[reaction: see text] Several organic reactions conducted at high temperatures, including the isomerization reaction, the Claisen rearrangement, and the Diels-Alder reaction, were investigated in three geminal dicationic ionic liquids with high thermal stability. High to moderate yields of the products for most entries were obtained. Advantages of these approaches are discussed. These ionic liquids were shown to be recyclable. The utility of these ionic liquid solvents for high-temperature organic reactions was demonstrated.  相似文献   

16.
The existence of microphase segregation between polar and nonpolar domains in ionic liquids changes the way in which solvation can be understood in these media. Here, we perform a structural analysis on the solvation of nonpolar, polar, and associating solutes in imidazolium-based ionic liquids, where this novel way of understanding their nature as microsegregated solvents is correlated with their ability to interact with different species in diverse and complex ways.  相似文献   

17.
Intramolecular photoinduced charge separation and recombination within the donor-acceptor molecule 4-(N-pyrrolidino)naphthalene-1,8-imide-pyromellitimide, 5ANI-PI, are studied using ultrafast transient absorption spectroscopy in the room-temperature ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide [EMIM][Tf2N]. The rate constants of both photoinduced charge separation and charge recombination for 5ANI-PI in [EMIM][Tf2N] are comparable to those observed in pyridine, which has a static dielectric constant similar to that of [EMIM][Tf2N] but a viscosity that is nearly 2 orders of magnitude lower than that of [EMIM][Tf2N]. The electron-transfer dynamics of 5ANI-PI in [EMIM][Tf2N] are compared to those in pyridine as a function of temperature and are discussed in the context of recently reported ionic liquid solvation studies.  相似文献   

18.
We study the bulk thermodynamics and interfacial properties of electrolyte solution mixtures by accounting for electrostatic interaction, ion solvation, and inhomogeneity in the dielectric medium in the mean-field framework. Difference in the solvation energy between the cations and anions is shown to give rise to local charge separation near the interface, and a finite Galvani potential between two coexisting solutions. The ion solvation affects the phase equilibrium of the solvent mixture, depending on the dielectric constants of the solvents, reflecting the competition between the solvation energy and translation entropy of the ions. Miscibility is decreased if both solvents have low dielectric constants and is enhanced if both solvents have high dielectric constant. At the mean-field level, the ion distribution near the interface is determined by two competing effects: accumulation in the electrostatic double layer and depletion in a diffuse interface. The interfacial tension shows a nonmonotonic dependence on the salt concentration: it increases linearly with the salt concentration at higher concentrations and decreases approximately as the square root of the salt concentration for dilute solutions, reaching a minimum near 1 mM. We also find that, for a fixed cation type, the interfacial tension decreases as the size of anion increases. These results offer qualitative explanations within one unified framework for the long-known concentration and ion size effects on the interfacial tension of electrolyte solutions.  相似文献   

19.
Photodetachment of electrons from iodide ions produced diiodide anion radicals in ionic liquids containing ammonium, pyrrolidinium, and piperidinium cations. The rates of reaction between diiodide anion radicals in molecular solvents such as H2O, methanol, and ethanol could be estimated by the Debye-Smoluchowski equation, which accounts for electrostatic interactions using dielectric constants for the molecular solvents. In contrast, the rates of reaction between diiodide anion radicals in the ionic liquids were close to the diffusion-limited rates for the neutral molecules, suggesting that electrostatic repulsion between the diiodide anion radicals is weakened by Coulombic shielding in the ionic liquids.  相似文献   

20.
The solvation of the zinc finger protein with the PDB-ID “5ZNF” in hydrated ionic liquids was studied at varying water content. 1-Ethyl-3-methylimidazolium and trifluoromethanesulfonate were the cation and anion, respectively. The protein stability as well as the solvation structure, the shell dynamics and the shell resolved dielectric properties were investigated by means of molecular dynamics simulations. The lengths of the respective trajectories extended up to 200 nanoseconds in order to cover the complete solvent dynamics. Considering the above mentioned properties as a function of the water content they all exhibit a maximum or minimum at the very same mole fraction. While the exact value x(H(2)O) = 0.927 depends on the underlying force field, its origin may be traced back to the competition between the van der Waals and the electrostatic energy of the protein as well as to the transition from aqueous dielectric screening to ionic charge screening with decreasing water content. The parameter-free Voronoi decomposition of space served as a basis for the analysis of most results. In particular, solvation shells were naturally inferred from this concept. In addition to the molecular analysis a mesoscopic view is given in terms of dielectric properties. Thereby, the net dielectric constant is decomposed into contributions from the protein, the first and second solvation shells as well as the bulk. Cross-terms between these components are given, too.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号