首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
考察了丙烯酰胺对水/IsoparM界面张力的影响以及对水溶液中非离子性乳化剂Tween85的助溶效果,并深入探讨了丙烯酰胺对Span80-Tween85/IsoparM/AM-H2O拟三元体系相行为的影响过程。结果表明,丙烯酰胺能够提高Tween85在水溶液中的溶解度,并可有效降低油水界面张力,进而能够扩大Span80-Tween85/IsoparM/AM-H2O拟三元相图的反相乳液区域面积。  相似文献   

2.
Water-in-oil-in-water (W/O/W) double emulsion can be prepared by incomplete phase inversion method using both medium chain triglycerides (MCT) and isopropyl myristate (IPM) as oil phase, Span 85-Tween 80 (HLB values of 2.5-3.0) as mixed emulsifiers. The preparation method was simple, and the final double emulsions were proved of good microstructure and particle size distribution. Owning to the addition of Tween 80 to Span 85, interfacial tension, interfacial viscosity and modulus decreased, which contributed to the phase inversion. Furthermore, formation of reverse micelles under high-speed dispersion may be a hypothesis to explain the incomplete phase inversion phenomenon.  相似文献   

3.
A three-step model of the transitional phase inversion (TPI) process for the formation of water-in-oil (W/O) emulsions is presented. Three types of emulsions exist in an emulsification process at different oil–water ratios and hydrophilic–lipophilic balance (HLB). A stable W/O emulsion was obtained using Sorbitan oleate (Span 80) and polyoxyethylenesorbitan monooleate (Tween 80) with a specified HLB and oil volume fraction. Oil was added into water, which contained the water-soluble surfactant, to dissolve the oil-soluble surfactant. This route allowed TPI to occur, and an interesting emulsification process was observed by varying the HLB, which corresponded to the change in the oil–water ratio. Two types of emulsions in the emulsification process were found: transition emulsion 1 (W/O/W high internal phase emulsion) and target emulsion 2 (W/O emulsion with low viscosity). This study describes the changes that occurred in the emulsification process.  相似文献   

4.

In an effort to determine the suitable polymerizable inverse microemulsion region in pseudoternary phase diagram (PPD), the pseudoternary system of Span80‐Tween80/isopar M/aqueous solution of acrylamide and 2‐(methacryloyloxyl) ethyl hexadecyl dimethyl ammonium bromide (DM16) was investigated at 40°C. The PPD was obtained by a combination method of turbidimetry and conductivity (CMTC). The reliability of the PPD line was checked by investigating the state of selected experimental points near the boundary line using the Pulsed Near Infrared Light Scattering (PNILS) and centrifugation. Based on the achieved PPD, a series of hydrophobically associating polyacrylamide (HAPAM) microlatex were successfully prepared by choosing the right formulation. It shows that CMTC could be used as a good method in ascertaining a polymerizable inverse microemulsion region, from which optimized HAPAM can be prepared. The factors governing the area of the polymerizable inverse microemulsion region were also discussed.  相似文献   

5.
细小乳状液的制备   总被引:3,自引:0,他引:3  
For preparing O/W miniemulsions containing soybean oil and silicone oil, three methods, phase inversion emulsification, D-phase emulsification, reformed D-phase emulsification were tested by using Brij92, 97, 98 and Tween 80, 85, 60, 20 and Span 80, 60 mixed surfactants. It was found that the O/W miniemulsions of soybean oil and silicone oil can not be formed by phase inversion emulsification method, but can be formed by the two other methods. The results of emulsification showed that if gel emulsion, in which fine oil droplets disperse in continuous phase with high surfactant content, appears during the emulsification process, the O/W miniemulsions can be formed by simply diluting with water.  相似文献   

6.
This letter presents a simple way to prepare monodisperse O/W and W/O emulsions in the same T-junction microfluidic device just by changing the wetting properties of the microchannel wall with different surfactants. Highly uniform droplets ranging from 50 to 400 mum with a polydispersity index (sigma) value of less than 2% were successfully prepared. With the change in surfactants and surfactant concentrations, the interfacial tension and the wetting properties varied, and disordered or ordered two-phase flow patterns could be controllable. Monodisperse O/W and W/O emulsions were prepared under the action of a cross-flowing shear force or a perpendicular shear force by using an oil solution with 0.1-2.0 wt % Span 80 and an aqueous solution with 0.1-2.0 wt % Tween 20 as a continuous-phase flow, respectively. It gives a controllable method of preparing O/W and W/O emulsions in the same microfluidic device.  相似文献   

7.
The stability and phase behavior of acrylamide-based emulsions, prepared with surfactants consisting of lipophilic Span80 and hydrophilic OP10, before or after polymerization were investigated. The research results indicated that the phase separation behavior of the W/O-type emulsions is related to the toluene/water ratio. When the water volume fraction was larger, the phase separation mechanism was mainly a penetration of aqueous molecules from the dispersed-phase droplets. When the water volume fraction was smaller, the phase separation mechanism was mainly a sedimentation of the separated aqueous droplets. At a fixed toluene/water ratio, the emulsion stability and the emulsion type are related not only to the ratio of the two surfactants but also to the acrylamide concentration, and the effect of increasing acrylamide concentration on the character of the emulsions is similar to that of increasing OP10 mass fraction (increasing HLB value), which determines the corresponding relationship between acrylamide concentration and HLB value in the most stable emulsion system. To obtain the most stable emulsion at a fixed acrylamide concentration, the emulsion with higher acrylamide concentration needs a lower HLB value for the emulsion systems.  相似文献   

8.
Formation of a normal (not temporary) W/O/W multiple emulsion via the one-step method as a result of the simultaneous occurrence of catastrophic and transitional phase inversion processes has been recently reported. Critical features of this process include the emulsification temperature (corresponding to the ultralow surface tension point), the use of a specific nonionic surfactant blend and the surfactant blend/oil phase ratio, and the addition of the surfactant blend to the oil phase. The purpose of this study was to investigate physicochemical properties in an effort to gain a mechanistic understanding of the formation of these emulsions. Bulk, surface, and interfacial rheological properties of adsorbed nonionic surfactant (CremophorRH40 and Span80) films were investigated under conditions known to affect W/O/W emulsion formation. Bulk viscosity results demonstrated that CremophorRH40 has a higher mobility in oil compared than in water, explaining the significance of the solvent phase. In addition, the bulk viscosity profile of aqueous solutions containing CremophorRH40 indicated a phase transition at around 78 ± 2 °C, which is in agreement with cubic phase formation in the Winsor III region. The similarity in the interfacial elasticity values of CremophorRH40 and Span80 indicated that canola oil has a major effect on surface activity, showing the significance of vegetable oil. The highest interfacial shear elasticity and viscosity were observed when both surfactants were added to the oil phase, indicating the importance of the microstructural arrangement. CremophorRH40/Span80 complexes tended to desorb from the solution/solution interface with increasing temperature, indicating surfactant phase formation as is theoretically predicted in the Winsor III region. Together these interfacial and bulk rheology data demonstrate that one-step W/O/W emulsions form as a result of the simultaneous occurrence of phase-transition processes in the Winsor III region and explain the critical formulation and processing parameters necessary to achieve the formation of these normal W/O/W emulsions.  相似文献   

9.
离心系数表征丙烯酰胺反相乳液的稳定性   总被引:1,自引:0,他引:1  
孟勇  赵飞平  尹笃林 《应用化学》2010,27(10):1133-1137
用丙烯酰胺反相乳液经离心处理后保留的乳液体积与原乳液体积之比(离心系数Vr)考察了丙烯酰胺及其衍生物反相乳液的稳定性。 结果表明,离心系数Vr越大,其乳液的稳定性越好。 在高速离心条件下,由Span80/Span85和Tween80构成的丙烯酰胺及其衍生物反相乳液的Vr与油相质量分数存在正相关的关系。 在油相质量分数确定的情况下,离心系数Vr不仅与3种表面活性剂构成的亲水亲油平衡值(HLB)有关,而且与丙烯酰胺及其衍生物的浓度和类型有关。 HLB值在4.20左右时,乳液是稳定的;随丙烯酸氧乙基三甲基氯化铵(DAC)在水相中质量分数的提高,反相乳液稳定性增强,w(DAC)>24%时可得到稳定乳液。 在15000 r/min离心3 min,Vr=0.95以上的丙烯酰胺及其衍生物反相乳液很稳定,静置半年仍未出现分层现象。  相似文献   

10.
W/O/W type multiple emulsions were prepared by two step emulsification procedures using an oily lymphographic agent, lipiodol, as an inner oil phase and Pluronic F-68 as a hydrophilic emulsifier contained in the outer aqueous phase. Span 80, Pluronic L-64 and HCO-60 were used as emulsifiers incorporating them into the inner oil phase. The phase volume of the inner and outer aqueous phases and the yield of the w/o/w type multiple emulsions were studied. The dissolution behaviour of the w/o/w type multiple emulsions were determined by a dialysis method employing cellulose tubing. The effect of emulsifier type and the amount of HCO-60 on the stability and prolonged release behavior of the w/o/w type multiple emulsions with or without lecithin, was also examined. The results indicate the HCO-60 is a better emulsifier than Span 80 or Pluronic L-64. Its use improves the stability and the prolonged release behavior of w/o/w type multiple emulsions.  相似文献   

11.
Unadsorbed emulsifiers affect the physical and chemical behaviour of oil-in-water (O/W) emulsions. A simple methodology to quantify unadsorbed emulsifiers in the aqueous phase of O/W emulsions has been developed. Emulsions were centrifuged and filtered to separate the aqueous phase from the oil droplets and the concentration of unadsorbed emulsifiers in the aqueous phase determined. The quantification of unadsorbed surfactants based on the direct transesterification of their fatty acids was validated for Tween 20, Tween 80, citric acid ester (Citrem), Span 20 and monolauroyl glycerol. To determine unadsorbed proteins, results obtained with Folin-Ciocalteu reagent or UV-spectrophotometry were compared on emulsions stabilized by β-lactoglobulin (BLG), β-casein (BCN) or bovine serum albumin (BSA). The first method gave more accurate results especially during aging of emulsions in oxidative conditions. The whole methodology was applied to emulsions stabilized with single or mixed emulsifiers. This approach enables optimization of emulsion formulations and could be useful to follow changes in the levels of unadsorbed emulsifiers during physical or chemical aging processes.  相似文献   

12.
Mixtures of polyols (glycerol, propylene glycol, glucose) and water were emulsified in oil (isopropyl myristate (IPM), medium chain triglycerides (MCT), long chain triglycerides (LCT), and d-limonene) under elevated pressures and homogenization, in the presence of polyglycerol polyricinoleate (PGPR), glycerol monooleate (GMO), and their mixture as emulsifiers to form water-in-oil emulsions. High pressures was applied to: a) the emulsion, b) the aqueous phase and c) the oil phase in the presence of the emulsifiers (PGPR and GMO). Under optimal pressure (2000 atms) applied to the ready-made emulsion or to the aqueous phase prior to its emulsification, and with optimal composition (30wt% polyol in the aqueous phase and MCT as the oil phase), the aqueous droplets were stable for months and submicron in size (0.1 μm). Moreover, due to equalization of the oil and the aqueous phases refractive indices, the emulsions were almost transparent. Pressure and polyols have synergistic effects on the emulsions stability. During preparation, surface tensions and interfacial tensions were dramatically reduced until an optimal water/polyols ratio was achieved, which allows rupturing of the droplets to submicronal size (0.1 μm) without recoalescence and fast diffusion to the interface. These unique W/O emulsions are suitable for preparing W/O/W double emulsions for sustained release of active materials for food applications.  相似文献   

13.
ABSTRACT

W/O/W and O/W/O multiple emulsions have been found in systems consisting of water, light mineral oil, and two nonionic surfactants (Span 80 and Tween 20).No specific order of addition of the components or pre-mixing was followed. Following gentle agitation at 25°, 35° and 45° for 48?hours, W/O/W emulsions were found at water contents above 30%, while 0/W/O emulsions generally appeared below 60% water.W/0 and 0/W emulsions, micellar phases and liquid crystalline phases were also observed at various compositions. The multiple emulsion regions decreased in size as temperature increased and the areas and positions of the other phases were also temperature dependent.  相似文献   

14.
Different compositions and emulsification protocols were used to prepare stable water-in-oil (w/o) emulsions. Water, mineral oil, and a mixture of Span 80 and Tween 80 surfactants were combined to form emulsions that can be used as reference for electrolyte-free systems. Here, we have proposed emulsions wherein different properties were evaluated. Electrical conductivity measurements indicated that conductivity increases linearly with increasing surfactant content. The emulsions’ flow curves and viscoelastic behaviors were delineated by rheological measurements. Stability studies by centrifugal testing have shown that smaller the surfactant content, lower the stability, for any used stirring speeds. Furthermore, higher the applied mixing rate to make the emulsion, higher the stability, regardless of the amount of surfactant. Electrical field stability analysis showed, for all systems, that critical electric field (CEF) values were dependent on either surfactant amount and emulsion elastic modulus.  相似文献   

15.
The droplet size distribution (DSD) of emulsions is the result of two competitive effects that take place during emulsification process, i.e., drop breakup and drop coalescence, and it is influenced by the formulation and composition variables, i.e., nature and amount of emulsifier, mixing characteristics, and emulsion preparation, all of which affect the emulsion stability. The aim of this study is to characterize oil-in-water (O/W) emulsions (droplet size and stability) in terms of surfactant concentration and surfactant composition (sodium dodecyl benzene sulphonate (SDBS)/Tween 80 mixture). Ultraviolet-visible (UV-vis) transmission spectroscopy has been applied to obtain droplet size and stability of the emulsions and the verification of emulsion stability with the relative cleared volume technique (time required for a certain amount of emulsion to separate as a cleared phase). It is demonstrated that the DSD of the emulsions is a function of the oil concentration and the surfactant composition with higher stability for emulsions prepared with higher SDBS ratio and lower relative cleared volume with the time. Results also show that smaller oil droplets are generated with increasing Tween 80 ratio and emulsifier concentration.  相似文献   

16.
Abstract

In this study, we are introducing a method that can effectively stabilize antioxidants in water‐in‐oil‐in‐water (W/O/W) double emulsions. Preliminarily, stable W/O/W double emulsions were produced by manipulating the characteristics of internal aqueous phase via two‐stage emulsification, resulting consequently in the formation of fine internal water droplets in the dispersed oil droplets. From conductivity measurements that can determine the elution amount of internal aqueous phase, it was confirmed that the double emulsion stability could be improved by treating the internal aqueous phase with a hydroxypropyl‐beta‐cyclodextrin. In this study, kojic acid, 5‐hydroxy‐2‐(hydroxymethyl)‐4‐pyrone was selected as a model antioxidant. The stabilization of kojic acid was attempted by locating it in the internal water droplets of the stable W/O/W double emulsions. The stability of kojic acid in the double emulsion system could be maintained at 90% for 10 weeks at high temperature. We believe that these stable W/O/W double emulsions could be used meaningfully as a carrier for many unstable antioxidants.  相似文献   

17.
Oregano essential oil emulsions (W/O) were prepared using different emulsifiers’ blend concentrations of Tween 80/Span 20, to study their phase separation during storage and to optimize the homogenization processing parameters by minimizing the droplet size of emulsions. Phase separation followed a second-order kinetic model, and relationships between the kinetic parameters and the blend concentrations of emulsifiers were established for determining the best emulsion formulations. The instability mechanism of emulsions demonstrated to be Ostwald ripening; therefore, by means of surface response methodology, mechanical homogenization parameters (11,700?rpm for 12 minutes at 1°C) were specified in order to minimize the droplet size of emulsions (1.02?±?0.12?µm).  相似文献   

18.
The system water–benzene–ethanol was used to illustrate the complexity of spontaneous emulsification, when water-poor emulsions are brought in contact with water. In the first case, an O/W emulsion located close to the plait point in the system was used. The aqueous phase in the emulsion was incompatible with water, and a strong spontaneous emulsification to an O/W between the two liquids took place in the water layer close to the interface between layers. In the second case, a W/O emulsion, also close to the plait point, was brought in contact with water. Now, the spontaneous emulsification between the water and the oil phase of the original emulsion to an O/W emulsion also took place in the water layer forming a distinct emulsion layer beneath the interface.  相似文献   

19.
A series of W/O/W or O/W/O emulsion stabilized solely by two different types of solid nanoparticles were prepared by a two-step method. We explored the option of particular emulsifiers for the multiple Pickering emulsions, and a variety of nanoparticles (silica, iron oxide, and clay) only differing in their wettability was used. The primary W/O emulsion was obtained by the hydrophobic nanoparticles, and then the hydrophilic nanoparticles were used as emulsifier in the secondary emulsification to prepare the W/O/W emulsion. In a similar way, the primary O/W emulsion of the O/W/O emulsion was stabilized by the hydrophilic nanoparticles, while the secondary emulsification to prepare the O/W/O emulsion was effected with the hydrophobic nanoparticles. The resultant multiple Pickering emulsion was stable to coalescence for more than 3 months, except the W/O/W emulsions of which the secondary emulsion stabilized by clay nanoparticles became a simple O/W emulsion in a day after preparation. Moreover, the temperature and pH sensitive poly(N-isopropylacrylamide-co-methacrylic acid) (P(NIPAm-co-MAA)) microgels were introduced as an emulsifier for the secondary emulsification to obtain the stimulus-responsive multiple W/O/W emulsion. Such microgel-stabilized multiple emulsions could realize the efficient controlled release of water-soluble dye, Rhodamine B (RB) on demand in a multiple-emulsion delivery system.   相似文献   

20.
Abstract

The potential of polytetrafluoroethylene (PTFE) membranes as water‐in‐oil (W/O) emulsification devices was investigated to obtain uniformly sized droplets and to convert them into microcapsules and polymer particles via subsequent treatments. Uniform W/O emulsion droplets have not been achieved using glass membranes unless the membrane was rendered hydrophobic by treatment with silanes. If a PTFE membrane is capable of providing uniform droplets for a W/O emulsion, a coordinated membrane emulsification system can be established since glass membranes have been so successful for O/W (oil‐in‐water) emulsification. In order to examine the feasibility of PTFE membrane emulsification, O/W and W/O emulsion characteristics prepared using PTFE membranes were compared with those prepared by the conventional SPG (Shirasu porous glass) membrane emulsification method. A 3 wt.% sodium chloride solution was dispersed in kerosene using a low HLB surfactant. Effects of the membrane pore size, permeation pressure, and the type of emulsifiers and concentration on the droplet size and on the size distribution (CV, coefficient of variation) were investigated. The CV of the droplets was fairly low, and the average droplet size was correlated with the critical permeation pressure of the dispersed phase, revealing that the PTFE membrane could be used as a one‐pass membrane emulsification device. Low CV values were maintained with a Span 85 (HLB = 1.8) concentration, 0.2–5.0 wt.% and a range of HLB from 1.8–5.0. For a brief demonstration of practical applications, nylon‐6,10 microcapsules prepared by interfacial polycondensation and poly(acrylamide) hydrogels from inverse suspension polymerization are illustrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号