首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel heterobimetallic sulfide cluster [( 5-C5Me5)WS3Au(dppms)][dppms = bis(diphenylphosphino)methane monosulfide] was prepared by the reaction of [PPh4][( 5-C5Me5)WS3] with AuI and dppm [dppm = bis(diphenylphosphino)methane] in MeCN. The title compound was fully characterized by elemental analysis, i.r., u.v.–vis., 1H-n.m.r. spectra, and by single crystal X-ray crystallography. In the molecular structure, the Au atom is trigonally coordinated by two bridging S atoms of a [( 5-C5Me5)WS3] anion and a P atom of the dppms molecule. The formation mechanism for this compound is discussed.  相似文献   

2.
Summary The complexes Rh(5-C5Me5)(CNR)Cl2, [Rh(5 - C5Me5)(CNR)2Cl][PF6], (R = Me, Et, i-Pr, t-Bu, C6H11, , p-CIC6H4 and 1-naphthyl), and [Rh(5-C5Me5)(CNR)3][PF6] (R = Et, i-Pr and t-Bu)] have been prepared by treatment of [Rh(5-C5Me5)Cl2]2 with RNC in the presence of [PF6] (as appropriate). These complexes do not react with alcohols or amines to yield carbenes, but withm-MeC6H4SNa and NaS2CNR2, the species Rh(5-C5H5)(CNEt)(SC6M4Me-m)2 and [Rh(5-C5Me5)(CNR)(S2CNR2)][PF6] (R = Me, R1 = Me or Et; R =p-ClC6H4, R1 = Me) are formed. Treatment of [Rh(5-C5H5)(CNR)2Cl][PF6] with NaBH4 gave low yields of compounds tentatively formulated as [Rh(5-C5Me5)(CNR)2(BH4)][PF6] (R = Me or Et).Reprints of this article are not available.  相似文献   

3.
A series of are necyc lope ntadienyl complexes,i. e., [Ru(5-c5R5)(6- are ne)]+ (1, R= H, arene = C6H6; 2, R = Me, arme = C6H6; 3, R = H, arctic = C6H3Me3; 4, R = Me, arene = C6H3Me3; 5, R = H, arene = C6Me6; 6, R = Me, arene = C6Me6) was studied by cyclic voltammetry. These compounds are capable of both oxidation and reduction. The reduction potential values depend on the number of methyl groups in the complex. Reduction of benzene complexes I and 2 by sodium amalgam in THF leads to the formation of decomplexation products, the addition of hydrogen to benzene, and dimerization of the benzene ligands. Both chemical and electrochemical reductions of mesitylene complexes3 and4 result in dimeric products [(5-C5R5)Ru(-5;5-Me3H3C6H3Me3)Ru(5-C5R5)] (14, R = H; 15, R = Me). The action of sodium amalgam on compound5 gives products of hydrogen addition to both hexamethylbenzene (17) and cyclopentadienyl (18) ligands along with the major product, the dimer [5-C5H5)Ru(-5; 5-Me6C6C6Me6)Ru(5-C5H5)] (16). In contrast to5, its permcthylated analog 6 is only capable of adding hydrogen to the hexamethylbenzene ligand.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1691–1697, July, 1996.  相似文献   

4.
Stacking reactions of the dicationic fragments [LM]2+ (LM = (-C6H6)Ru, (-C6H3Me3)Ru, or (-C5Me5)Rh) with the complex (-C5H5)Co(-C4H4BCy) (Cy = cyclo-C6H11) afforded new dicationic 30-electron triple-decker complexes [(-C5H5)Co(-:-C4H4BCy)ML](BF4)2 containing a cyclohexyl-substituted borole ligand in the central position.  相似文献   

5.
An X-ray diffraction study of [(5-C5Me5)Ru(CO)(-CO)]2 was performed, revealing its dimeric structure and centrosymmetrictrans conformation. The Ru-Ru bond length (2.758(1) Å) and the separation between the Ru atom and the plane of the 5-C5Me5 ligand (1.923 Å) are greater than those in the Cp analog and in the isostructural Cp and C5Me5 complexes of iron; this effect is due to the s inductive effect of the Me groups.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 543–544, March, 1994.  相似文献   

6.
Oxidative dehydrodimerization of some phenylvinylidene complexes of manganese is studied by cyclic voltammetry. In the case of (5-C5H5)(CO)2Mn=C=C(H)Ph, the process occurs as the homolysis of the C–H bond in the radical cation of {(5-C5H5)(CO)2Mn=C=C(H)Ph} and the dimerization of intermediate -phenylethinyl cation [(5-C5H5)(CO)2Mn–CC–Ph]+ to a binuclear dication of bis-carbine type (5-C5H5)(CO)2Mn+C– C(Ph)=C(Ph)–CMn+(CO)2(5-C5H5). The reduction of the latter leads to binuclear bis-vinylidene complex (5-C5H5)(CO)2Mn=C=C(Ph)–C(Ph)=C=Mn(CO)2(5-C5H5). Oxidative dehydrodimerization of complexes (5-C5R5)(CO)(L)Mn=C=C(H)Ph (R = H, L = PPh3; R = Me, L = CO) occurs through the immediate C–C coupling of radical cations {(5-C5R5)(CO)(L)Mn=C=C(H)Ph} and yields binuclear dication bis-carbine complexes (5-C5R5)(CO)(L)Mn+C–C(H)(Ph)–C(H)(Ph)–CMn+(CO)(L)(5-C5R5), whose reduction leads to neutral compounds (5-C5H5)(CO)2Mn=C=C(Ph)–C(Ph)=C=Mn(CO)(L)(5-C5H5). Complex (5-C5H5)(CO)2Mn=C=C(Ph)–C(Ph)=C=Mn(CO)2(5-C5H5) undergoes the oxidation-induced nucleophilic addition of water, forming cyclic bis-carbene product with a bridge heterocyclic ligand (-3,4-diphenyl-2,5-dihydro-2,5-diylidene)-bis-(5-cyclopentadienyldicarbonyl manganese).  相似文献   

7.
Summary Quantum chemical calculations based on density functional theory have been performed on Cr(CO)6, (6-C6H6)Cr(CO)3 and (6-C6H6)Cr(CO)2(CS) at the local and nonlocal level of theory using different functionals. Good agreement is obtained with experiment for both optimized geometries and metal-ligand binding energies. In particular, a comparison of metal-arene bond energies calculated for the (6-C6H6)Cr(CO)3 and (6-C6H6)Cr(CO)2(CS) complexes correlates well with kinetic data demonstrating that substitution of one CO group by CS leads to an important labilizing effect of this bond, which may be primarily attributed to a larger -backbonding charge transfer to the CS ligand as compared with CO.  相似文献   

8.
Studies on C-C bond formation between simple hydrocarbon species such as CH2, C=CH2, CH=CH2, CH2=CH2, CH2=C=CH2 and CHCH at a diruthenium center suggest that the process is promoted when the dimetal center can readily compensate for the two electrons lost in the formation of the new C-C bond. Thus, whereas -CH2 and ethene combine only under forcing conditions, the combination of -CH2 with allene or ethyne, which have additional -electrons available for coordination, occurs readily at room temperature. Likewise, the availability of uncoordinated -electrons in -C=CH2 allows vinylidene to link rapidly with ethene at room temperature. Alkyne complexes [Ru2(CO)(-RCCR)(-C5H5)2] (R=CF3 or Ph) react only under vigorous conditions with additional alkyne to give [Ru2(CO)(-C4R4) (-C5H5)2], but give these same species at room temperature in the presence of acid, shown to be due to the intermediacy of highly reactive 30-electron -vinyl cations. Thermally, alkyne linking proceedsvia three-alkyne species [Ru2(-C6R6)(-C5H5)2] to a four-alkyne complex [Ru2(-C8R8)(-C5H5)2], containing an unprecedented C8 ligand composed of a C6 ring with a C2 tail. Treatment of [Ru2(CO)(-RCCR)(-C5H5)2] with unsaturated metal fragments gives trimetal complexes such as [Ru3(CO)5(3-CF3CCCF3) (-C5H5)2]. The MeCN derivative of this species undergoes unusual linking processes on reaction with additional alkyne to giveinter alia [Ru3(CO)3(3-CCF3){3-C3(CF3)3}(-C5H5)2], arising from alkyne cleavage, and [Ru3(CO)3{3-C4(CF3)2(CO2Me)2}(-C5H5)2], a closo-pentagonal bipyramidal Ru3C4 cluster.  相似文献   

9.
Treatment of [W(CO)(MeC2Me)2(-C5H5)][PF6] with ONMe3 in acetonitrile yields [W(NCMe)(MeC2Me)2(-C5H5)][PF6] which undergoes irreversible reduction at a Pt electrode in THF. Sodium amalgam reduction of [W(NCMe) (MeC2Me)2(-C5H5)][PF6] gives orange crystals of [W2(µ-,, 2, 2-C4Me4)2 (-C5H5)2] X-ray studies on which reveal pairwise alkyne coupling and a novel bis(metallacyclopentadiene) structure.Dedicated to Professor L. F. Dahl on the occasion of his 65th birthday.  相似文献   

10.
New cationic complexes [(6-C13H10)Fe(5-Cp*)]PF6 and [(6-9-CH3-C13H9)Fe(5-Cp*)]PF6 were obtained by the reaction of Cp*Fe(CO)2Br with fluorene and 9-methylfluorene, respectively. Deprotonation of these complexes byt-BuOK in THF affords zwitter-ionic compounds (6-C13H9)Fe(5-Cp*) and (6-9-CH3-C13H8)Fe(5-Cp*) (A). WhenA is heated in nonane at 150 °C it undergoes 65 inter-ring rearrangement with the formation of hexamethyldibenzoferrocene (B). The electrochemical behavior ofA andB was studied by cyclic voltammetry. One-electron reduction ofA andB to the corresponding radical anions induces inter-ring haptotropic rearrangementA .–B .–. The equilibrium in the 19 state is shifted to the 6-isomeric radical anionA .–, while in the 18 precursors, it shifts to the 5-isomerB.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 319–324, February, 1994.The authors are grateful to D. V. Zagorevskii (A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences) for recording and interpreting the mass spectra, and to A. A. Borisenko (Moscow State University) for recording the NMR spectra.This work was financially supported by the Russian Foundation for Basic Research (Grant 93-03-5209).  相似文献   

11.
The electron density distribution and atomic displacements were analyzed based on the results of precision low-temperature X-ray diffraction studies of a series of isostructural (Pnma, Z = 4) mixed metallocenes (5-C5H5)M(5-C7H7) (M = Ti, V, or Cr) and (5-C5H5)Ti(8-C8H8). The barriers to rotation of the cyclic ligands were evaluated based on rms libration amplitudes. Analysis of the deformation electron density demonstrated that the character of the M--(-ligand) chemical bond depends substantially both on the nature of the metal atom and the size of the ligand. Lowering of the local symmetry of the (5-C5H5)M(5-C7H7) complexes to CS leads to distortion of the cylindrical symmetry of the electron density distribution observed in vanadocene (5-C5H5)2V and titanocene (5-C5H5)Ti(8-C8H8).  相似文献   

12.
Summary [RuCl2(CO)2] n reacts with the Schiff base 1-acetylferrocenethiosemicarbazone, [Fe(-Cp)(-C5H4MeC=NN-HCSNH2)] to give [Fe(-Cp)(-C5H4MeC=NN-HCSNH2)RuCl2(CO)2] and with 1-acetylferrocenesemicarbazone [Fe(-Cp)(-C5H4MeC=NN-HCSNH2)] to give [Fe(-Cp)(-C5H4MeC=NN-HCSNH2)RuCl2-(CO) 2]. Spectroscopic data indicate that the Schiff bases act as bidentate ligands and coordinate to ruthenium via the hydrazinic N and either the S or O atoms, respectively, giving stable heterobimetallic complexes, which have been characterized by i.r. and 1H-n.m.r. spectroscopies, and elemental analyses.Part of this work was presented at the First International Conference in Chemistry and its applications in Doha, Qatar, 1993.  相似文献   

13.
Wang  Mei  Miguel  Daniel  Riera  Víctor  Bois  Claudette  Jeannin  Yves 《Transition Metal Chemistry》2001,26(4-5):566-569
A novel dimolybdenum complex [(3-C3H5)(CO)2Mo(-S2CPCy3)Mo(3-CH2CMeCH2)(CO)2], obtained by reacting the [(CO)2(3-C3H5)Mo(-S2CPCy3)Mo(CO)3] anion with an excess of ClCH2CMe=CH2, has been characterized by i.r., 31P{1H}, 1H- and 13C-n.m.r. spectroscopy and by elemental analysis. The crystal structure of the complex, determined by X-ray diffraction, shows a definite preference for the central carbon of the S2CPCy3 bridge to bind to the Mo(2) atom coordinated by 3-2-methylallyl, rather than the Mo(1) atom attached to unsubstituted 3-allyl ligand.  相似文献   

14.
Summary The synthesis and properties of the [(5-C5H5)L(RN3R)CoIII]PF6 complexes, with L = PEt3, PPh3, P(OMe)3 or P(OPh)3, are reported. A six coordinate configuration containing a chelating triazenido ligand is proposed which is isostructural with the known complexes of iron and nickel.The spectroscopic properties of the isoelectronic Co and Fe complexes, (5-C5H5)L(RN3R)M, are compared in relation to the charge on the central metal atom. The complex with L = CO could not be prepared, but the carbonyl inserted product (5-C5H5)(L{RNNN(R)C(O)}Co was isolated. In one of the reactions, the novel ring-bound triphenylphosphine complex, [5-C5H5)(5-C5H4PPh3)CoIII](PF6)2, was isolated as a side product. The mechanism of this reaction is discussed.  相似文献   

15.
It has been shown by cyclic voltammetry in a THF medium in the temperature range from –70 °C to +20 °C that one-electron electrochemical reduction of (6-C13H10)Cr(CO)3 (1) to the corresponding 19-electron anion radical (1 ) is accompanied by splitting off of a H atom to form the 18-electron carbon-centered anion (6-C13H9)Cr(CO)3 (2 ), which at room temperature undergoes intramolecular haptotropic isomerization to the metal-centered (5-C13H9)Cr(CO)3 ( 3) anion. The reversible one-electron reduction of3 to the corresponding 19-electron radical dianion3 2.– induces 5 6 interannular isomerization. In contrast to the equilibrium shift to the 5-isomer in 18-electron complexes 2 and 3, in their 19-electron analogs the equilibrium is shifted to the 6-isomer.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 48–53, January, 1994.This work was carried out with financial support from the Russian Foundation for Basic Research (no. 93-03-5209)  相似文献   

16.
Binuclear RhIII and RuII complexes of the [M1-CN-M2]+BF 4 (M1 and/or M2 are (5-Cp)(3-C3H5)Rh and (6-C6H6)(3-C3H5)Ru) type, heteronuclear organometallic compound (5-Cp)(3-C3H5)RhCNPd(3-C3H5)Cl, and mononuclear RhIII and RuII complexes [(3-C3H5)LM(MeCN)]+ BF4 (M = Rh, L = 5-Cp; M = Ru, L = 6-C6H6) were synthesized. An electrochemical study of these compounds in solutions demonstrates that the bond between the bridged CN ligand and the metal atoms is rather strong, and there is no dissociation into mononuclear fragments in solutions. The kinetics of the reaction of [(5-Cp)(3-C3H5)Rh(MeCN)]+ BF4 with halide ions was studied by electrochemical methods. The ligand exchange proceeds by a bimolecular dissociative-exchange mechanism.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 968–973, May, 1995.  相似文献   

17.
Redox properties of mono- and binuclear -complexes of Cr with fluoranthene with the composition of (6-C16H10)Cr(6-C6H6), (6-C16H10)Cr(CO)3 and (-6,6-C16H10)Cr2(6-C6H6)(CO)3 are studied by cyclic voltammetry. Relations between half-wave potentials of redox processes and coordination sites of fragments Cr(6-C6H6)- and Cr(CO)3 with the ligand and their nature are found.  相似文献   

18.
Several novel zirconium(iv) complexes with the chelating oxygen-containing cyclopentadienyl ligand, tetramethyl(2-methoxyethyl)cyclopentadiene, have been synthesized. [5:1-Tetra-methyl(2-methyl)cyclopentadienyl]trichlorozirconium (2), bis[5-tetramethyl(2-methoxyethyl)cyclopentadienyl]dichlorozirconium (3), [5-pentamethylcyclopentadienyl][5-tetra-methyl(2-methoxyethyl)cyclopentadienyl]dichlorozirconium (4), and [5-tetra-methyl(2-methylthioethyl)cyclopentadienyl][5-tetramethyl(2-methoxyethyl)-cyclopentadienyl]dichlorozirconium (5) have been prepared from the corresponding lithium cyclopentadienide (l). The crystal structure of cyclopentadienyl complex2 has been established by X-ray analysis. The coordination OZr bond in compound2 exists both in the crystalline state and in solutions. No coordination of this type was observed in complexes3–5. Synthesized complexes2–5 are discussed in comparison with their sulfur-containing analogs.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1828–1832, July, 1996.  相似文献   

19.
Summary The [2.2]paracyclophane cluster, Ru6C(CO)14( 3- 2 2 2-C16H16) (1), undergoes reaction with Me3NO and triphenylphosphine to yield Ru6C(CO)13( 3- 2 2 2-C16H16)(PPh3) (2), which may also be produced from (1) by thermolysis with PPh3 in THF. Compound (2) has been fully characterized in solution by spectroscopy and in the solid state by a single crystal X-ray diffraction analysis at 277 K, and its structure is compared with that of the parent cluster, (1). Using the same synthetic procedures, the tricyclohexylphosphine analogue, Ru6C(CO)13( 3- 2 2 2-C16H16)(PCy3) (3), has also been prepared and characterized spectroscopically. A comparison of the chemical shifts of the 577-01 protons in the 1H-n.m.r. spectra of compounds (1)–(3) together with a variety of other [2.2]paracyclophane and benzene clusters has been made.  相似文献   

20.
The electrochemical properties of eight acyclic cluster polyethers [5-C5H4CH2(CH2OCH2) n CH2C5H4-5][MFeCoE(CO)8]2[(1a–f): E = S, M = Mo, n = 2, 3, 4; E = S, M = W, n = 2, 3; E = Se, M = Mo, n = 2], (5-MeCOC5H4)[(5-C5H4CH2CH2)2O] [Mo2FeS(CO)7][MoFeCoS(CO)8] (2) and (5-MeCOC5H4)2[(5-C5H4CH2- CH2)2O] [Mo2FeS(CO)7]2 (3) have been investigated in CH2Cl2 using cyclic voltammetry with n-Bu4NPF6 as the supporting electrolyte. The transport of alkali metal cations through a liquid membrane with the double cluster (3) as carrier has been examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号