首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This review gives quantitative results of the separation of individual classes of polar glycerolipids of natural and synthetic origin into their individual species. Universal quantitative criteria calculated from the fatty-acid composition of the species obtained or of their mixtures are proposed for determining the degree of reliability of these results. The fractionation of the initial acyl-containing glycerolipids, their N- and O-derivatives with high hydrophobicity, the products of the enzymatic hydrolysis of the native lipids (diacylglycerols, phosphatidic acids) and also the lipophilic O-derivatives of these products is considered. For all these compounds, the results of their separation by the methods of TLC and HPLC both in the form of the adsorption chromatography of the coordination complexes with silver and also in the form of reversed-phase chromatography are discussed.Institute of Plant Physiology of the USSR Academy of Sciences, Moscow. Translated from Khimiya Prirodnykh Soedinenii, No. 4, pp. 453–477, July–August, 1989.  相似文献   

2.
This paper describes a novel method of sample preparation for the determination of trace concentrations of polycyclic aromatic hydrocarbons (PAHs) in high-boiling petroleum products. Limits of quantitation of the investigated PAHs in materials of this type range from tens of nanograms per kilogram to <20 μg/kg. The studies revealed that in order to separate most of interferences from the analytes without a significant loss of PAHs, it is necessary to use size exclusion chromatography as the first step of sample preparation, followed by adsorption using normal-phase liquid chromatography. The use of orthogonal separation procedure described in the paper allows the isolation of only a group of unsubstituted and substituted aromatic hydrocarbons with a specific range of molar mass. The lower the required limit of quantitation of PAHs, the larger is the scale of preparative liquid chromatography in both steps of sample preparation needed. The use of internal standard allows quantitative results to be corrected for the degree of recovery of PAHs during the sample preparation step. Final determination can be carried out using HPLC-FLD, GC-MS, or HPLC-UV–VIS/DAD. The last technique provides a degree of identification through the acquired UV–VIS spectra.  相似文献   

3.
Two sensitive and reproducible methods are described for the quantitative determination of dasatinib in the presence of its degradation products. The first method was based on high performance thin layer chromatography (HPTLC) followed by densitometric measurements of their spots at 280 nm. The separation was on HPTLC aluminium sheets of silica gel 60 F254 using toluene:chloroform (7.0:3.0, v/v). This system was found to give compact spots for dasatinib after development (R F value of 0.23 ± 0.02). The second method was based on high performance liquid chromatography (HPLC) of the drug from its degradation products on reversed phase, PerfectSil column [C18 (5 μm, 25 cm × 4.6 mm, i.d.)] at ambient temperature using mobile phase consisting of methanol:20 mM ammonium acetate with acetic acid (45:55, v/v) pH 3.0 and retention time (t R = 8.23 ± 0.02 min). Both separation methods were validated as per the ICH guidelines. No chromatographic interference from the tablet excipients was found. Dasatinib was subjected to acid–alkali hydrolysis, oxidation, dry heat, wet heat and photo-degradation. The drug was susceptible to acid–alkali hydrolysis and oxidation. The drug was found to be stable in neutral, wet heat, dry heat and photo-degradation conditions. As the proposed analytical methods could effectively separate the drug from its degradation products, they can be employed as stability indicating.  相似文献   

4.
The separation of uranium and thorium from matrices containing various metal ions, was studied. The mobile phase contains isopropyldithiophosphoric acid (i-PrDTP), as a complexing agent, in order to differentiate the studied species by modifying their retention. The paper reports the successful separation and the quantitative determination of uranium and thorium in the presence of Ni2+, Co2+ and Ag+ in the concentration range 2.5–2.5 μg/μl for uranium and 2.5–30 μg/μl for thorium.  相似文献   

5.
The main function of cuticular lipids in insects is the restriction of water transpiration through the surface. Lipids are involved in various types of chemical communication between species and reduce the penetration of insecticides, chemicals, and toxins and they also provide protection from attack by microorganisms, parasitic insects, and predators. Hydrocarbons, which include straight-chain saturated, unsaturated, and methyl-branched hydrocarbons, predominate in the cuticular lipids of most insect species; fatty acids, alcohols, esters, ketones, aldehydes, as well as trace amounts of epoxides, ethers, oxoaldehydes, diols, and triacylglycerols have also been identified. Analyses of cuticular lipids are chemically relatively straightforward, and methods for their extraction should be simple. Classically, extraction has relied mainly on application of apolar solvents to the entire insect body. Recently, several alternative methods have been employed to overcome some of the shortcomings of solvent extraction. These include the use of solid-phase microextraction (SPME) fibers to extract hydrocarbons from the headspace of heated samples, SPME to sample live individuals, and a less expensive method (utilized for social wasps), which consists of the collection of cuticular lipids by means of small pieces of cotton rubbed on the body of the insect. Both classical and recently developed extraction methods are reviewed in this work. The separation and analysis of the insect cuticular lipids were performed by column chromatography, thin-layer chromatography (TLC), high performance liquid chromatography with a laser light scattering detector (HPLC-LLSD), gas chromatography (GC), and GC–mass spectrometry (MS). The strategy of lipid analysis with the use of chromatographic techniques was as follows: extraction of analytes from biological material, lipid class separation by TLC, column chromatography, HPLC-LLSD, derivatization, and final determination by GC, GC-MS, matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) MS, and liquid chromatography–mass spectrometry (LC-MS).  相似文献   

6.
7.
N-Acylated homoserine lactones (AHLs) are produced by Gram-negative bacteria as communication signals and are frequently studied as mediators of the “quorum sensing” response of bacterial communities. Several reports have recently been published on the identification of AHLs from different species and attempts have been made to study their role in natural habitats, for example the surface of plant roots in the rhizosphere. In this article, different analytical methods, including bacterial biosensors and chromatographic techniques, are reviewed. A concept for assignment of the structures of AHLs is also presented. The retention behaviour of derivatives of AHLs containing β-keto or hydroxyl groups and/or double bonds has been evaluated in relation to the separation behaviour of AHLs with saturated and unsubstituted alkanoyl chains. Samples have also been analysed by high resolution mass spectrometry (Fourier-transform ion-cyclotron-resonance mass spectrometry, FTICR-MS), nano liquid chromatography–electrospray ionization ion trap mass spectrometry (nano-LC–MS) and by the aid of a biosensor. The results obtained from ultra performance liquid chromatography (UPLC), FTICR-MS, nano-LC–MS, and bioassays have been compared to attempt structural characterisation of AHL without chemical synthesis of analytical standards. The method was used to identify the major AHL compound produced by the rhizosphere bacterium Acidovorax sp. N35 as N-(3-hydroxydecanoyl)homoserine lactone.  相似文献   

8.
A recently developed and validated method for simultaneous determination of 17 inorganic and organic arsenic compounds in marine biota has been successfully applied to routine analysis of different food products, including fish, shellfish, edible algae, rice, and other types of grain. During one year, approximately 250 food samples were analyzed, mostly fish and rice. Long-term stability and robustness of the system was observed and reproducible results for certified reference materials were ensured by means of control charts. The separation was performed by ion-pair chromatography on an anion-exchange column to separate anionic, neutral, and cationic arsenic species in one chromatographic run. Hyphenation to ICP–MS allowed element-specific and sensitive detection of the different arsenic species with a detection limit as low as 8 ng As L–1 in the sample extract, which is equivalent to 2 ng As g–1 in the original sample. Special emphasis was laid on the analysis of marine algae and rice samples. These food types can contain elevated levels of the very toxic inorganic arsenic species (up to 90% in rice) and therefore are the focus of interest in the food industry. In marine algae, inorganic arsenic was mainly present as arsenate whereas in rice arsenite predominated.  相似文献   

9.
Procedures are developed on the basis of liquid chromatography/mass spectrometry for determining the transformation products of unsymmetrical dimethylhydrazine in soils: formic acid dimethylhydrazide (1-formyl-2,2-dimethylhydrazine, analytical range 0.01–20 mg/kg), 1-methyl-1,2,4-triazole (analytical range 0.05–100 mg/kg), 1,1-dimethylguanidine (analytical range 0.05–100 mg/kg), and dimethylamine (analytical range 0.25–250 mg/kg). The measurements were performed in the mode of chemical ionization under atmospheric pressure followed by the registration of positive ions corresponding to the protonated forms of the components to be determined. A version of ion chromatography was elaborated for separation. For sample pretreatment, the use of extraction with methanol (for 1-formyl-2,2-dimethylhydrazine) and ultrasonic extraction with a weakly alkaline buffer solution (for other substances) was proposed.  相似文献   

10.
Liquid chromatography (LC) hyphenated with both elemental and molecular mass spectrometry has been used for Se speciation in Se-enriched garlic. Different species were separated by ion-pair liquid chromatography–inductively coupled plasma mass spectrometry (LC–ICP–MS) after hot-water extraction. They were identified by on-line reversed-phase liquid chromatography–electrospray ionization tandem mass spectrometry (RPLC–ESI–MS–MS). Se-methionine and Se-methylselenocysteine were determined by monitoring their product ions. Another compound, γ-glutamyl-Se-methylselenocysteine, shown to be the most abundant form of Se in the garlic, was determined without any additional sample pre-treatment after extraction and without the need for a synthesized standard. Product ions for this dipeptide were detected by LC–ESI–MS–MS for three isotopes of Se78 Se, 80Se: and 82Se. The method was extended to the species extracted during in-vitro gastrointestinal digestion. Because both Se-methylselenocysteine and γ-glutamyl-Se-methylselenocysteine have anticarcinogenic properties, their extractability and stability during human digestion are very important. Garlic was also treated with saliva, to enable detection and analysis of species extracted during mastication. Detailed information on the extractability of selenium species by both simulated gastric and intestinal fluid are given, and variation of the distribution of Se among the different species with time is discussed. Although the main species in garlic is the dipeptide γ-glutamyl-Se-methylselenocysteine, Se-methylselenocysteine is the main compound present in the extracts after treatment with gastrointestinal fluids. Two more, so far unknown compounds were observed in the chromatogram. The extracted species and their transformations were analysed by combining LC–ICP–MS and LC–ESI–MS–MS. In both the simulated gastric and intestinal digests, Se-methionine, Se-methylselenocysteine, and γ-glutamyl-Se-methylselenocysteine could be determined by LC–ESI–MS–MS by measuring their typical product ions.   相似文献   

11.
In this study the possibility of the simplification of plasma chemistry models was investigated in methane thermal plasma. Although, ionic species and electrons are important compounds of plasmas, their concentrations are much lower than of the neutral species. The role of non-neutral species, ions and electrons was investigated for a 1 v% methane–99 v% argon mixture by comparing the model concentration outputs obtained by thermodynamic and kinetic models and also by two thermodynamic models with and without ionic species. All the models gave identical results. This is an important conclusion for simulating plasma reactions as full ion containing mechanisms are not or hardly available. The product distribution on the initial methane concentration was also investigated and it turned out that the initial methane concentration has a major role in controlling the qualitative and quantitative distribution of the products.  相似文献   

12.
Glycerolipid is a main component of membranes in oxygenic photosynthetic organisms. Up to now, the majority of publication in this area has focused on the physiological functions of glycerolipids and lipoprotein complexes in photosynthesis, but the study on the separation and identification of glycerolipids in thylakoid membrane in cyanobacteria is relatively rare. Here we report a new method to separate and identify five photosynthetic glycerolipid classes, including monoglucosyl diacylglycerol, monogalactosyl diacylglycerol, digalactosyl diacylglycerol, sulfoquinovosyl diacylglycerol, and phosphatidylglycerol, in cyanobacteria Synechococcus sp. PCC 7002 by two‐dimensional (normal‐ and reversed‐phase) liquid chromatography online coupled to quadrupole time‐of‐flight mass spectrometry. Over twice as many lipid species were detected by our method compared to the previously reported methods. Ten new odd‐chain fatty acid glycerolipids were discovered for the first time. Moreover, complete separation of isomers of monogalactosyl diacylglycerol and monoglucosyl diacylglycerol was achieved. According to the tandem mass spectrometry results, we found that the head group of monoglucosyl diacylglycerols was not as stable as that of monogalactosyl diacylglycerols, which might explain why the organism chose monogalactosyl diacylglycerols and digalactosyl diacylglycerols instead of monoglucosyl diacylglycerols as the main content of the photosynthetic membranes in the history of evolution. This work will benefit further research on the physiological function of glycerolipids.  相似文献   

13.
Separation and detection of seven V-type (venomous) and G-type (German) organophosphorus nerve agent degradation products by gas chromatography with inductively coupled plasma mass spectrometry (GC–ICPMS) is described. The nonvolatile alkyl phosphonic acid degradation products of interest included ethyl methylphosphonic acid (EMPA, VX acid), isopropyl methylphosphonic acid (IMPA, GB acid), ethyl hydrogen dimethylamidophosphate sodium salt (EDPA, GA acid), isobutyl hydrogen methylphosphonate (IBMPA, RVX acid), as well as pinacolyl methylphosphonic acid (PMPA), methylphosphonic acid (MPA), and cyclohexyl methylphosphonic acid (CMPA, GF acid). N-(tert-Butyldimethylsilyl)-N-methyltrifluroacetamide with 1% TBDMSCl was utilized to form the volatile TBDMS derivatives of the nerve agent degradation products for separation by GC. Exact mass confirmation of the formation of six of the TBDMS derivatives was obtained by GC–time of flight mass spectrometry (TOF-MS). The method developed here allowed for the separation and detection of all seven TBDMS derivatives as well as phosphate in less than ten minutes. Detection limits for the developed method were less than 5 pg with retention times and peak area precisions of less than 0.01 and 6%, respectively. This method was successfully applied to river water and soil matrices. To date this is the first work describing the analysis of chemical warfare agent (CWA) degradation products by GC–ICPMS. Figure Illustrated here are six parent organophosphorus nerve agents corresponding to the degradation products analyzed by gas chromatography with ICPMS and ToF-MS detection. The authors would like to thank Daisy-Malloy Hamburg and Kevin M. Kubachka for creating this figure  相似文献   

14.
Summary An oxalic acid-α-hydroxyisobutyric acid eluent has been used for the separation and determination of rare-earth elements by high-performance ion-exchange chromatography. Fifteen rare-earth elements were separated within less than 25 min on a 150×4.6 mm i.d. column packed with 5-μm sulfonic acid-bonded silica particles by elution with a combined gradient of 0.60–9.0 mM oxalic acid and 19.0–5.0 mM α-hydroxyisobutyric acid at pH 4.6. Detection and quantitation of the separated rare-earth elements was accomplished by visible-absorbance measurements at 600 nm after postcolumn reaction with arsenazo I. The gradient of the two complexing agents was optimized to enable the separation of yttrium(III) without interference from other elements, especially dysprosium(III) and terbium(III). Mass detection limits of the elements were in the range of 2–4 ng. Finally, the chromatographic system was applied to the quantitative analysis of rare-earth elements in monazite and xenotime.  相似文献   

15.
Methyl-branched fatty acids (MBFAs) are the dominant form of fatty acid found in many bacteria. They are also found at low levels in a range of foodstuffs, where their presence has been linked to bacterial sources. In this study we evaluated the potential of compound-specific isotope analysis to obtain insights into the stable carbon isotope ratios (δ13C values in ‰) of individual MBFAs and to compare them to the stable carbon isotope ratios of straight-chain fatty acids in food. Due to their low abundance in foodstuffs, the MBFAs were enriched prior to gas chromatography coupled to isotope ratio mass spectrometric (GC–IRMS) analysis. After transesterification, urea complexation was used to suppress the 16:0 and 18:0 methyl esters that were dominant in the samples. Following that, silver-ion high performance liquid chromatography was used to separate the saturated from the unsaturated fatty acids. The resulting solutions of saturated fatty acids obtained from suet, goat’s milk, butter, and human milk were studied by GC–IRMS. The δ13C values of fatty acids with 12–17 carbons ranged from −25.4‰ to −37.6‰. In all samples, MBFAs were most depleted in carbon-13, followed by the odd-chain fatty acids 15:0 and 17:0. 14:0 and 16:0 contained the highest proportions of carbon-13. The results from this study illustrate that MBFAs have distinctive δ13C values and must originate from other sources and/or from very different substrates. These measurements support the initial hypothesis that δ13C values can be used to attribute MBFAs to particular sources.  相似文献   

16.
A method for the neutron activation analysis of arsenic, selenium and antimony has been developed. A radiochemical separation is performed by distillation followed by precipitation of the individual elements. Selenium and arsenic are precipitated by reduction to the elemental form while antimony is precipitated as sulfide. The chemical yields and detection limits using 0.5 g samples are the following: As 90–100%, 0.4 ppb, Se 80–100%, 8 ppb and Sb 50–70%, 0.2 ppb. Results from the analysis of nine international biological standard samples are given.  相似文献   

17.
Arsenic-speciation analysis in marine samples was performed by high-pressure liquid chromatography (HPLC) with ICP–MS detection. Separation of eight arsenic species—AsIII, MMA, DMA, AsV, AB, TMAO, AC and TeMAs+—was achieved on a C18 column with isocratic elution (pH 3.0), under which conditions AsIII and MMA co-eluted. The entire separation was accomplished in 15 min. The HPLC–ICP–MS detection limits for the eight arsenic species were in the range 0.03–0.23 μg L−1 based on 3σ for the blank response (n=5). The precision was calculated to be 2.4–8.0% (RSD) for the eight species. The method was successfully applied to several marine samples, e.g. oysters, fish, shrimps, and marine algae. Low-power microwave digestion was employed for extraction of arsenic from seafood products; ultrasonic extraction was employed for the extraction of arsenic from seaweeds. Separation of arsenosugars was achieved on an anion-exchange column. Concentrations of arsenosugars 2, 3, and 4 in marine algae were in the range 0.18–9.59 μg g−1. This paper was presented at the European Winter Conference 2005  相似文献   

18.
An overview is presented on thiazolylazo dyes and their analytical applications in the determination, preconcentration or separation of trace metal ions. The article summarizes conventional analytical methods based on spectrophotometry, solid phase extraction, liquid chromatography and liquid–liquid and cloud point extraction. Both in-batch and on-line procedures are considered. General properties about these ligands are also commented on. Finally, the use of thiazolylazo dyes in procedures involving electroanalytical and other methods is presented.  相似文献   

19.
The technique for and methods of separation of products of nuclear fission play a major role in many stages of the nuclear fuel cycle. The extraction of these products from effluent solution after the processing of the burnt-up nuclear fuel is receiving considerable attention. Trivalent lanthanoides are usualy extracted together with Am(III) and their mutual separation is rather difficult.1–4 The extraction of lanthanoides with tertiary amines or quaternary ammonium salts involving the benzyl group as one of substituents has been studied in order to find the influence of the alkyl chain length on the extraction selectivity and capacity.3–5 Suitable extractants for the separation of Am(III) and Ln(III) from the acidic nitrate solutions were recommended. Using vapour phase osmometry and cryoscopy the association of these compounds was measured at 5.25 and 50°C allowing a rough estimation of medium association degree for the formation of the aggregates. The method of apparent molar volumes, supplemented by the spectrophotometric method, was used for identification of the chemical composition of the aqueous phase.  相似文献   

20.
Summary High-performance liquid chromatography was applied for the separation and determination of the Δ2 and Δ3 isomers of 7-aminodeacetoxycephalosporanic acid (7·ADCA) and cephalexin monohydrate in their mixtures. Separation was performed on a column containing bonded octadecyl silica phase. The effects of pH (in the range of 3.0–7.6) on the investigated compounds were studied. Two organic modifiers, acetonitrile and methanol, were used to improve and accelerate separation. The applied procedure was very reliable for quantitative determination. Excellent correlation with the data of microbiological assay was found. The procedure was very convenient even when other impurities were present in the sample. This is an advantage with respect to microbiological assays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号