首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Double-charged diazabicyclo[2.2.2]octane (DABCO) was immobilized on the inner surface of a nanomaterial composed of the layered double hydroxides (LDHs) of Zn(II) and Cr(III). The resulting material was characterized by SEM, FT-IR and XRD techniques. This novel nanocomposite has been used as a highly porous fiber coating for solid-phase microextraction (SPME) of phenol and various chloro-, nitro- and aminophenols. The LDH nanocomposite was deposited on a stainless steel wire and then evaluated with respect to the extraction of phenolic compounds from water samples. The effects of temperature, extraction time, ionic strength, stirring rate, pH, and desorption temperature and time on the extraction were optimized. The compounds were then separated and quantified by GC-MS. Under optimum conditions, the repeatability for a single fiber (for n = 3 and expressed as the relative standard deviation) is between 2.3 and 7.2 %. The detection limits are between 0.02 and 6.3 pg mL−1. The method is simple, rapid, and inexpensive. The fiber is thermally stable and its use gives high recoveries.

Double-charged diazabicyclo[2.2.2]octane (DABCO) was immobilized on the inner surface of a nanomaterial composed of the layered double hydroxides (LDHs) of Zn(II) and Cr(III). This novel nanocomposite has been used as a highly porous fiber coating for solid-phase microextraction (SPME) of phenol and various chloro-, nitro- and aminophenols.

  相似文献   

3.
A highly porous fiber-coated SBA-15/polyaniline material was prepared for solid-phase microextraction (SPME). The SBA-15/polyaniline nanocomposite was synthesized via chemical polymerization. The prepared SBA-15/polyaniline particles were analyzed by scanning electron microscopy analysis. The prepared nanomaterial was immobilized onto a stainless steel wire for fabrication of the SPME fiber. The fiber was evaluated for the extraction of some polycyclic aromatic hydrocarbons (PAHs) from aqueous sample solutions in combination with gas chromatography-mass spectrometry (GC-MS). In optimum conditions (extraction temperature 60°C, extraction time 40 min, ionic strength 20%, stirring rate: 500 rpm, desorption temperature 260°C, desorption time 2 min), the repeatability for one fiber (n=3), expressed as relative standard deviation (RSD%), was between 5.3 and 8.6% for the test compounds. For deionized water, spiked with selected PAHs, the detection limits for the studied compounds were between 2 and 20 pg/mL.  相似文献   

4.
In this research, a carbon nanotube/layered double hydroxide nanocomposite was synthesized by an in situ growth route by electrostatic force. The prepared carbon nanotube/layered double hydroxide nanocomposite was successfully prepared and deposited on a stainless‐steel wire for the fabrication of the solid‐phase microextraction fiber. The fiber was evaluated for the extraction of phenolic compounds from water samples. Analytical merits of the method, under optimum conditions (extraction temperature: 75°C, extraction time: 30 min, desorption time: 2 min, desorption temperature 260°C, salt concentration: 10% w/v) are 0.01–300 ng/mL for the linear dynamic range and 0.005–0.08 for the limit of detection. In optimum conditions, the repeatability for one fiber (n = 3), expressed as relative standard deviation, was between 6.5 and 9.9% for the phenolic compounds.  相似文献   

5.
A highly porous fiber coated polypyrrole/hexagonally ordered silica (PPy/SBA15) materials were prepared for solid-phase microextraction (SPME). The PPy/SBA15 nanocomposite was synthesized by an in situ polymerization technique. The resulting material was characterized by the scanning electron microscopy, thermogravimetric analysis and differential thermal analysis. The prepared nanomaterial was immobilized onto a stainless steel wire for fabrication of the SPME fiber. The fiber was evaluated for the extraction of some polycyclic aromatic hydrocarbons (PAHs) from aqueous sample solutions in combination with gas chromatography-mass spectrometry (GC-MS). A one at-the-time optimization strategy was applied for optimizing the important extraction parameters such as extraction temperature, extraction time, ionic strength, stirring rate, desorption time and desorption temperature. In optimum conditions (extraction temperature 70°C, extraction time 20 min, ionic strength 20% (WV(-1)), stirring rate 500 rpm, desorption temperature 270°C, desorption time 5 min) the repeatability for one fiber (n=3), expressed as relative standard deviation (R.S.D. %), was between 5.0% and 9.3% for the tested compounds. The quantitation limit for the studied compounds were between 13.3 and 66.6 pg mL(-1). The life span and stability of the PPy/SBA15 fiber are good, and it can be used more than 50 times at 260°C without any significant change in sorption properties. The developed method offers the advantage of being simple to use, with shorter analysis times, lower cost of equipment, thermal stability of fiber and high relative recovery in comparison to conventional methods of analysis.  相似文献   

6.
Feng J  Sun M  Liu H  Li J  Liu X  Jiang S 《Journal of chromatography. A》2010,1217(52):8079-8086
A novel solid-phase microextraction fiber based on a stainless steel wire coated with Au nanoparticles was prepared and has been applied, coupled with gas chromatography, to the extraction of aromatic hydrophobic organic chemical pollutants in rainwater and soil extract. The solid-phase microextraction fiber exhibited excellent extraction efficiency and selectivity. Effects of extraction time, extraction temperature, ionic strength, stirring rate and desorption conditions were investigated and optimized. Single fiber repeatability and fiber-to-fiber reproducibility were less than 7.90% and 26.40%, respectively. The calibration curves were linear in a wide range for all analytes. Correlation coefficients ranged from 0.9941 to 0.9993. The as-established SPME-GC method was used successfully to two real natural samples. Recovery of analytes spiked at 10 μg L(-1) and 100 μg L(-1) ranged from 78.4% to 119.9% and the relative standard deviations were less than 11.3%.  相似文献   

7.
Headspace solid phase microextraction using anodized aluminum fiber in combination with capillary GC–MS was utilized as monitoring technique for the collection and detection of the volatile compounds of Echinophora platyloba DC. Experimental parameters, including the sample weight, extraction temperature, extraction time and humidity effect, desorption time and desorption temperature were examined and optimized. Using HS-SPME followed by GC–MS, 53 compounds were separated and identified in E. platyloba DC, which mainly included E-β ocimene (47.63%), R-D-decalactone (13.28%), α-pinene (7.43%) and nonane (6.71%). Compared with hydrodistillation (HD), HS-SPME, provides the advantages of a small amount of sample, timesaving, simplicity and cheapness. To the best of our knowledge, this is the first report on using anodized aluminum fiber in solid-phase microextraction coupled to headspace for the investigation of volatile fraction of medicinal plant.  相似文献   

8.
9.
Hydroxyfullerene (fullerol) as a novel coating for solid-phase microextraction (SPME) fiber was first prepared by a sol-gel technology. The coating procedure involving sol solution composition and conditioning process was presented. A fullerene polysiloxane surface-bonded porous coating on the fused-silica fiber surface was obtained and confirmed by IR spectra and scanning electron microscopy. The coating has stable performance at high temperature (even to 360 degrees C) and solvents (organic and inorganic) because of the properties of fullerene and the chemical binding between the coating and the fiber surface. The extraction properties of the new coatings to less volatile organic compounds, such as polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons and polar aromatic amines were investigated using headspace SPME coupled with GC-electron-capture detection and GC-flame ionization detection. In addition, compared with commercial SPME stationary phases, the new coatings showed higher sensitivity, faster velocities of mass transfer for aromatic compound, and possessed planarity molecular recognition for PCBs. Moreover, this fiber was firm, inexpensive, durable and can be prepared simply. The fiber-to-fiber reproducibility was very good.  相似文献   

10.
A novel C18 functionalized graphene oxide (GO) coated solid-phase microextraction fiber was prepared by a novel protocol. Based on the strong van der Waals interaction present in GO and abundant oxygenous groups in GO sheets, a simple layer-by-layer self-assembly method was used in the preparation process and then C18 was successfully self-assembled on GO via C-O-Si bonding. Coupled with gas chromatography, extraction performance of the fiber was tested with polycyclic aromatic hydrocarbons (PAHs) as model analytes. The fiber not only exhibited excellent extraction efficiency and selectivity, but also showed many advantages including high rigidity, long service life and well stability toward organic solvent, acidic and alkali solutions, and high temperature. The relative standard deviations for single-fiber repeatability and fiber-to-fiber reproducibility were less than 7.26 and 17.25%, respectively. The detection limits to the PAHs were less than 0.08 μg L(-1) and the calibration curves were linear in a wide range for all analytes. The as-established Solid-phase microextraction GC method was also successfully used for determination of PAHs in two real water samples.  相似文献   

11.
A novel cedar-like Au nanoparticles (AuNPs) coating was fabricated on an etched stainless steel (SS) wire by direct chemical deposition and used as an efficient and unbreakable solid phase microextraction (SPME) fiber. The etched SS wire offers a rough surface structure for subsequent growth of AuNPs in chloroauric acid solution. As a result, the uniform cedar-like AuNPs coating with larger surface area was tightly attached to the etched SS wire substrate. The AuNPs coated etched SS fiber (AuNPs/SS) was examined for SPME of ultraviolet (UV) filters, phthalate esters and aromatic hydrocarbons coupled to high-performance liquid chromatography with UV detection. The fabricated fiber exclusively exhibited excellent extraction efficiency and selectivity for some aromatic hydrocarbons. Influential parameters of extraction and desorption time, temperature, stirring rate and ionic strength were investigated and optimized. The limits of detection ranged from 0.008 μg L−1 to 0.037 μg L−1. The single fiber repeatability varied from 3.90% to 4.50% and the fiber-to-fiber reproducibility ranged from 5.15% to 6.87%. The recovery of aromatic hydrocarbons in real water samples spiked at 2.0 μg L−1 and 20 μg L−1 ranged from 94.38% to 106.2% with the relative standard deviations below 6.44%. Furthermore the growth of the cedar-like AuNPs coating can be performed in a highly reproducible manner. This fabricated fiber exhibits good stability and withstands at least 200 extraction and desorption replicates.  相似文献   

12.
Oxygen evolution reaction(OER) is a key process for electrochemical water splitting due to its intrinsic large overpotential. Recently, layered double hydroxides(LDHs), especially Ni Fe-LDH, have been regarded as highly performed electrocatalysts for OER in alkaline condition. Here we first present a new class of Ni La-LDH electrocatalyst synthesized by an electrochemical process for efficient water splitting. The as-prepared NiL a-LDH nanosheet arrays(NSAs) give remarkable electrochemical activity and durability under alkaline environments, with a low overpotential of 209 mV for OER to deliver a current density of 10 mA cm~(-2), surpassing most of previous reported LDHs eletrocatalysts. The presence of NiLa-LDH in this work extends the studies about LDHs-based electrocatalysts, which will benefit the development of electrochemical energy storage and conversion systems.  相似文献   

13.
A ceramic/carbon composite was developed and applied as a novel coating for solid-phase microextraction (SPME). The ceramic/carbon coating exhibited several good properties for SPME, such as high extraction quantities and enhanced thermal and organic solvent stability. Under scanning electron microscopy (SEM), the tightly attached coating layer on stainless steel wire revealed excellent mechanical characteristics. Single fiber and fiber-to-fiber reproducibility were less than 6.9 and 9.5%, respectively. The effects of extraction and desorption parameters such as extraction time, stirring rate, ionic strength, and desorption temperature and desorption time on the extraction/desorption efficiency were investigated and optimized. Coupled to gas chromatography with a flame thermionic detector, the optimized SPME method was applied to the analysis of organophosphorus pesticides (OPPs) in aqueous samples. The calibration curves were linear from 0.05 to 200 ng mL(-1) for fenchlorphos, pirimiphos-methyl, chlorpyrifos, ethion and from 0.2 to 200 ng mL(-1) for quinalphos, and the limits of detection were between 5.2 and 34.6 ng L(-1). The recovery of the OPPs spiked in real water samples at 5 ng mL(-1) ranged from 86.2 to 103.4% and the relative standard deviations were less than 8.5%.  相似文献   

14.
The study on the performance of polyaniline as a fiber coating for solid-phase microextraction (SPME) purposes has been reported. Polyaniline coatings were directly electrodeposited on the surface of a stainless steel wire and applied for the extraction of some organochlorine pesticides (OCPs) from water samples. Analyses were performed using GC-electron capture detection (GC-ECD). The results obtained show that polyaniline fiber coating is suitable for the successful extraction of organochlorine compounds. This behavior is most probably due to the porous surface structure of polyaniline film, which provides large surface areas and allowed for high extraction efficiency. Experimental parameters such as adsorption and desorption conditions were studied and optimized. The optimized method has an acceptable linearity, with a concentration range of 1-5000 ng/L. Single fiber repeatability and fiber-to-fiber reproducibility were less than 12 and 17%, respectively. High environmental resistance and lower cost are among the advantages of polyaniline fibers over commercially available SPME fibers. The developed method was applied to the analysis of real water samples from Yangtse River and Tianmu Lake.  相似文献   

15.
16.
We describe the synthesis of a layered zinc hydroxide‐dodecyl sulfate organic–inorganic hybrid nanocomposite as a new solid‐phase microextraction fiber. The fiber coating can be prepared easily in a short time and the reaction is at room temperature; it is mechanically stable and exhibits relatively high thermal stability. The synthesized layered zinc hydroxide‐dodecyl sulfate nanocomposite was successfully prepared and immobilized on a stainless steel wire and evaluated for the extraction of aromatic compounds from aqueous sample solutions in combination with gas chromatography and mass spectrometry. The method yields good results for some validation parameters. Under optimum conditions (extraction time: 15 min, extraction temperature: 50°C, desorption time: 1 min, desorption temperature: 250°C, salt concentration: 0.5 g/mL), the limit of detection and dynamic linear range were 0.69–3.2 ng/L and 10–500 ng/L, respectively. The method was applied to the analyses of benzene, toluene, ethylbenzene, and o‐, p‐, and m‐xylenes in two real water samples collected from the Aji river and Mehran river, Tabriz, Iran. Under optimum conditions, the repeatability and reproducibility for one fiber (n = 3), expressed as the relative standard deviation, was 3.2–7.3% and 4.2–11.2% respectively. The fibers are thermally stable and yield better recoveries than conventional methods of analysis.  相似文献   

17.
Abolghasemi  Mir Mahdi  Yousefi  Vahid  Rafiee  Ezzat 《Mikrochimica acta》2014,181(15):1807-1814

A highly porous silica-supported tungstophosphoric acid (PW) nanocluster was prepared for use in solid-phase microextraction (SPME) of polycyclic aromatic hydrocarbons (PAHs). The PWs represent a class of discrete transition metal-oxide nanoclusters and their structures resemble discrete fragments of metal-oxide structures of definite size and shape. Transition metal-oxide nanoclusters display large structural diversity, and their monodisperse sizes can be tuned from several Ångstroms up to 10 nm. The highly porous silica-supported tungstophosphoric acid nanocluster material is found to be capable of efficiently extracting PAHs from aqueous sample solutions. The nanomaterial was immobilized on a stainless steel wire for fabrication of the SPME fiber. Following thermal desorption, the PAHs were quantified by GC-MS. Analytical merits include limits of detection that range from 0.02 to 0.1 pg mL−1 and a dynamic range as wide as from 0.001 to 100 ng mL−1. Under optimum conditions, the repeatability for one fiber (n = 3), expressed as the relative standard deviation, is between 4.3 % and 8.6 %. The method is simple, rapid, and inexpensive. The thermal stability of the fiber and the high relative recovery make this method superior to conventional methods of extraction.

The highly porous silica-supported tungstophosphoric acid nanocluster material is found to be capable of efficiently extracting PAHs from aqueous sample solutions. The prepared nanomaterial was immobilized onto a stainless steel wire for fabrication of the SPME fiber. Following thermal desorption, the PAHs were quantified by GC-MS.

  相似文献   

18.
A highly porous silica-supported tungstophosphoric acid (PW) nanocluster was prepared for use in solid-phase microextraction (SPME) of polycyclic aromatic hydrocarbons (PAHs). The PWs represent a class of discrete transition metal-oxide nanoclusters and their structures resemble discrete fragments of metal-oxide structures of definite size and shape. Transition metal-oxide nanoclusters display large structural diversity, and their monodisperse sizes can be tuned from several Ångstroms up to 10 nm. The highly porous silica-supported tungstophosphoric acid nanocluster material is found to be capable of efficiently extracting PAHs from aqueous sample solutions. The nanomaterial was immobilized on a stainless steel wire for fabrication of the SPME fiber. Following thermal desorption, the PAHs were quantified by GC-MS. Analytical merits include limits of detection that range from 0.02 to 0.1 pg mL?1 and a dynamic range as wide as from 0.001 to 100 ng mL?1. Under optimum conditions, the repeatability for one fiber (n?=?3), expressed as the relative standard deviation, is between 4.3 % and 8.6 %. The method is simple, rapid, and inexpensive. The thermal stability of the fiber and the high relative recovery make this method superior to conventional methods of extraction.
The highly porous silica-supported tungstophosphoric acid nanocluster material is found to be capable of efficiently extracting PAHs from aqueous sample solutions. The prepared nanomaterial was immobilized onto a stainless steel wire for fabrication of the SPME fiber. Following thermal desorption, the PAHs were quantified by GC-MS.  相似文献   

19.
In this work, a highly porous fibre coated with polythiophene/hexagonally ordered silica nanocomposite (PT/SBA-15) was prepared and used for extraction of essential oils with microwave-assisted distillation headspace solid phase microextraction (MA-HS-SPME) method. The prepared nanomaterials were immobilised on a stainless steel wire for fabrication of the SPME fibre. Using MA-HS-SPME followed by GC-MS, 24 compounds were separated and identified in Achillea tenuifolia, which mainly included limonene (28.6%), α-cadinol (12.7%), borneol (6.7%), caryophyllene oxide (3.2%), bornyl acetate (4.3%), camphene (3.2%) and para-cymene (2.3%). The experimental results showed that the polythiophene/hexagonally ordered silica nanocomposite fibres were suitable for the semi-quantitative study of the composition of essential oils in plant materials and for monitoring the variations in the volatile components of the plants.  相似文献   

20.
A new solid-phase microextraction (SPME) fiber is fabricated through ultra violet irradiation polymerization of ametryn-molecularly imprinted polymer on the surface of anodized-silylated aluminum wire. The prepared fiber is durable with very good chemical and thermal stability which can be coupled to GC and GC/MS. The effective parameters on the fabrication and application procedures such as spraying mode, ultra violet irradiation (polymerization) time, number of sprayings and polymerizations, pH and ionic strength of sample and extraction time were optimized. This fiber shows high selectivity with great extraction capacity toward triazines. SPME and GC analysis of ametryn, prometryn, terbutryn, atrazine, simazine, propazine and cyanazine using the fabricated fiber result in the detection limits of 9, 32, 27, 43, 51, 74 and 85 ng mL−1, respectively. The reliability of the prepared fiber in real samples has been investigated and proved by using spiked tap water, rice, maize and onion samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号