首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Charging of disperse particles with good conduction in two-phase media with unipolar charge is considered in the case when the volume concentration of the particles is low. For this, in the framework of electrohydro-dynamics [1, 2], a study is made of the charge of one perfectly conducting liquid particle in a gas (or liquid) with unipolar charge in a fairly strong electric field. The influence of the inertial and electric forces on the motion of the gas is ignored, and the velocities are found by solving the Hadamard—Rybczynski problem. We consider the axisymmetric case when the gas velocity and electric field intensity far from the particle are parallel to a straight line. The analogous problem for a solid spherical particle was solved in [3–6] (in [3], the relative motion of the gas was ignored, while in [4–6] Stokes flow around the particle was considered). The two-dimensional problem of the charge of a solid circular, perfectly conducting cylinder in an irrotational flow of gas with unipolar charge was studied in [7].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 108–115, November–December, 1980.We thank L. I. Sedov and V. V. Gogosov for a helpful discussion of the present work.  相似文献   

2.
The flow from the tip of a needle electrode is caused by the Coulomb force acting on the space charge [1–3]. This charge is formed because of the dependence of the conductivity on the temperature, nonuniformity of which is due to Joule heating [1] and the electric field intensity [2] or processes near the electrode [3–5]. The present paper considers the stability of a dielectric liquid between spherical electrodes in order to elucidate the possibility of a thermoelectrohydrodynainic flow due to Joule heating. In the presence of external heating, the possibility of such a flow has been demonstrated both experimentally and theoretically [6–8].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 133–137, March–April, 1980.  相似文献   

3.
The effective collision frequency of electrons and ions which leads to temperature equalization in a plasma in a constant magnetic field and a weak high-frequency electric field when the gyroscopic radius of the electrons is less than the Debye screening radius is determined. The corresponding values of the relaxation time are determined over a wide range of values of the ratio between the electron and ion temperatures, over a wide range of values of the magnetic and electric fields, and also as a function of the frequency of the external electric field.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 6, pp. 41–48, November–December, 1970.  相似文献   

4.
The nature of the forces acting on a weakly conductive liquid dielectric in an electric field will be considered. In the general case there act upon the liquid dielectric a Coulomb force related to space charge and a polarization force [1]. In many studies the motion of a conductive liquid dielectric has been explained by the presence of the polarization force, with the Coulomb force being ignored. In the present study it will be demonstrated that the force related to space charge may be larger than or of the same order as the forces connected with polarization of the medium and, generally speaking, must be considered in describing the equations of motion in concrete cases.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 155–157, January–February, 1977.  相似文献   

5.
Difficulties in determining experimentally the local electrical parameters of unipolar-charged jets are arousing interest in the theoretical investigation of electrogasdynamic (EGD) flows. Free EGD jets were examined, for example, in [1–3]. In order to control the charge on the dielectric parts of aircraft surfaces, which results from their static electrification and may have certain negative consequences [4], and, moreover, to influence the flow in the boundary layer use is being made of unipolar-charged jets propagating near the dielectric [5, 6]. In [6] the case of an ion jet near a dielectric surface possessing surface conductivity was investigated. In these circumstances it is possible to neglect charge diffusion, which considerably simplifies the problem. Space charge diffusion was taken into account in [7], but subject to certain very important simplifications. The author has calculated the electrical parameters of a unipolar-charged jet propagating in a viscous incompressible gas near an ideal dielectric plate, with allowance for surface and polarization charges and, moreover, the diffusion processes near the surface. An asymptotic solution is obtained for the equations of the ionic diffusion layer as the ratio of the thickness of the diffusion layer to the thickness of the hydrodynamic boundary layer tends to zero.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 174–180, September–October, 1984.The author is grateful to V. V. Mikhailov and A. V. Kazakov for valuable advice and comments.  相似文献   

6.
The hydrodynamic flows which arise in the presence of mechanical vibrations of a capillary tube filled with immiscible liquids are investigated. At the hermetically sealed ends of the tube there are air bubbles. It is assumed that the interfacial contact perimeters of the immiscible liquids can slip relative to the walls of the tube. The results of numerical calculations are given for a mercury electrocapillary transducer [1–4], which is a capillary tube filled with water and mercury. The calculated and experimental amplitude—frequency characteristics (the dependences of the amplitude of the electric potential difference on the vibration frequency) are compared.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 3, pp. 36–45, May–June, 1993.  相似文献   

7.
It is known [1–4] that an unsteady gamma source gives rise to an electromagnetic field in the surrounding space. Most of the studies of the characteristics of such fields have been performed in the approximation which is linear in the field [1–3]. An exception is [4] in which the slowing down of Compton electrons by the electric field is taken into account. It follows from [1, 2] that the characteristic scale of the fields created close to the source is of the order of 3 · 104 V/m. Although this value is appreciably lower than the value of breakdown fields in air, electric discharges are observed [5] in the vicinity of a gamma source, indicating the presence of substantially larger fields. One effect not taken into account in the latter approximation which could lead to an increase in the field is the increase in electron termperature due to the electric field [6]. On the one hand, this decreases the electron mobility and consequently also the conductivity of the system, On the other hand, it is known that the electron attachment coefficient for electronegative molecules strongly affects the characteristics of electric fields and depends on the electron energy. Therefore, the electron balance equation must take account of the dependence of on the electric field through the electron energy, and this leads to a further change in conductivity. We take account of these effects on the shaping of electric fields in air in the vicinity of the source. It is assumed that electron lifetimes are determined solely by their attachment to molecules. This is a good approximation for air pressures near normal [1–3].Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 163–170, July–August, 1976.  相似文献   

8.
Hydrodynamic phenomena in weakly conducting single-phase media due to interphase electric stresses are reviewed in [1]. In the present paper, a model is constructed of a dielectric suspension with body couples due to the field acting on free charges distributed on the surface of the particles of the suspension. Averaging of the microscopic fields yields macroscopic equations for the field and the polarization of the dielectric suspension with allowance for the finite relaxation time of the distribution of the free charge on the phase interface. The developed model is used to consider the occurrence of spontaneous rotation of a dielectric cylinder in a weakly conducting suspension in the presence of an electric field; compared with the case of single-phase media [2], this is characterized by a significant reduction in the threshold intensity of the electric field with increasing concentration of the particles [3]. In the present model of a dielectric suspension, the destabilization of the cylinder is due to the occurrence of rotations of the particles of the suspension due to the interaction between the polarization and the motion of the medium. The relaxation equation for the polarization for the given model is analogous to the corresponding equation for media which can be magnetized [4–6].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 86–93, March–April, 1980.  相似文献   

9.
In inhomogeneous electric fields, at sufficiently high field strengths, a weakly conducting liquid becomes unstable and is set in motion [1–4]. The cause of the loss of stability and the motion is the Coulomb force acting on the space charge formed by virtue of the inhomogeneity of the electrical conductivity of the liquid [4–13]. This inhomogeneity may be due to external heating [4–6], a local raising of the temperature by Joule heating [2, 7, 8], and nonlinearity of Ohm's law [9–13]. In the present paper, in the absence of a temperature gradient produced by an external source, a condition is found whose fulfillment ensures that the influence of Joule heating on the stability can be ignored. Under the assumption that this condition is satisfied, a criterion for stability of a weakly conducting liquid between spherical electrodes is obtained.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 137–142, July–August, 1979.  相似文献   

10.
It is known from experiments [1–3] that the velocity of streamers, induced in the center of the interelectrode gap and propagating to the electrodes under conditions when the streamer length is comparable with the distance between the electrodes, increases linearly as the streamer length increases. This relationship is in qualitative agreement with theory [4], Nevertheless, the velocity of streamers starting from the electrodes and propagating in a long interelectrode gap remains practically constant during the whole propagation process [5, 6], In the case of short gaps (2–5 cm), constancy of the velocity is observed during the stage of the process when the length of the streamer is much less (20%) than the length of the gap [7], Since the electric field at its end controls the streamer propagation, the constancy of the streamer velocity indicates that the controlling field is constant under these conditions. A number of theoretical models were proposed in [8–13] which describe uniformly moving anode- and cathode-directed streamers (henceforth called anode and cathode streamers). Comparison of experimental data with the corresponding theoretical model enables one to determine the streamer parameters: the electric field, the charged-particle density, the current density, the channel radius, etc. In the case of an anode streamer in Xe an attempt at such a comparison was made, in particular, in [6]. However, the lack of reliable data on the value of the drift velocity and the diffusion coefficient of electrons in Xe for E/p (102 – 103) V/cm · mm Hg allowed only rough estimates to be made. In this paper a numerical calculation is made of the drift velocity, the diffusion coefficient of electrons in Xe, and the rate of excitation of Xe atoms in the resonance level in the range of values of E/p (101–103) V cm · mm Hg, and the volt-ampere characteristic of the breakdown is measured under conditions described in [6] (p0=300 mm Hg and E 104–105 V/cm). Using these results, the formulas for the velocity of anode [12] and cathode [13] streamers, and experimental data [6], the parameters of the streamers studied in [6] are determined.Translated from Zhurnal Prikladnoi Meknaniki i Tekhmcheskoi Fiziki, No. 3, pp. 6–11, May–June, 1976.The authors thank A. T. Rakhimov and A. N. Starostin for useful discussions, and A. V. Markov for help with the experiments.  相似文献   

11.
A study is made of the problem of finding an electric field that keeps a spherical gas bubble in a fixed position in a dielectric liquid in a gravity field.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 101–105, November–December, 1982.We thank I. E. Tarapov for helpful advice and discussion of the results.  相似文献   

12.
The article considers the problem of the filtration of liquids (or gases), pumped through a borehole at a constant rate with elastic filtration conditions. The permeability of the stratum is assumed to be an exponential function of the coordinates. The viscosities of the injected and displaced liquids are assumed to be different. To increase the capacity of strata, i.e., of collectors used for the burial of industrial waste flows and gases, various methods are employed to increase the fracturing and the permeability of the rocks (hydro-pulse techniques, explosions, and other methods). As a result of this, a spherical region is formed in the rocks, in which the permeability varies along the radius. The character of this change is well described by an exponential function. The pumping of waste flows or industrial gases into such a cavity leads to the displacement of the stratum liquid (or gas). The problem of the displacement of one liquid by another liquid not miscible with it under rigid filtration conditions was first discussed in [1–5]. Here a study was made of a region of finite dimensions, bounded by two boundaries, with given pressures or mass flow rates (the linear and axisymmetric flow problems). The permeability of the stratum was assumed to be independent of the coordinates. A special characteristic of these problems is the fact that it is impossible to consider unbounded or semi-bounded filtration conditions in them since, under rigid filtration conditions, the condition of bounded character of the pressure (the head) is not satisfied at infinity. Elastic filtration conditions for two immiscible liquids were first discussed in [6], and later in [7, 8] and other reports. Here an investigation was made of the linear and axisymmetric problems for an unbounded region. In [9, 10] solutions are given to some problems with spherical symmetry for an unbounded region, with rigid filtration conditions and a jumpwise change of the permeability along the radius. In the problems of [6–10] the condition of the bounded character of the pressure is satisfied. In [11] the case of a hyperbolic change in the permeability of the rocks is considered.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 42–51, November–December, 1974.  相似文献   

13.
The article considers questions of the stability of the equilibrium states of a liquid which absorbs light. Threshold values are found for the intensity of the light in the problem of the stability of the equilibrium of a liquid in a square cavity with three thermally insulated walls. A steady-state integro-interpolation scheme is presented for the numerical calculation of problems of photoabsorption convection. The propagation of light waves in absorbing media is accompanied by the dissipation of radiant energy. In heavy liquids, absorption heating of a substance in the field of a wave may be the reason for the appearance of convection [1–3]. It is important to study the conditions for the appearance and the special characteristics of this type of convection, and its inverse effect on the structure of the light field. The first problem is important when the light beams are regarded only as a source of convection [4], and the second in questions of the directed propagation of light [5] and of self-focusing phenomena [2, 3, 6–10]. For high-energy heat fluxes and a liquid with a strong temperature dependence of its dielectric permeability, the convective self-stress will be very considerable; in this case, both problems are mutually interconnected. The excitation of convection by the absorption of light, without taking account of the inverse effect on the structure of the light beam, was studied numerically in [1, 4]. Equations for photoabsorption convection, taking account of convective self-stress in the Boussinesq approximation and of the geometry of the optics, were formulated in [11]. Several economical finite-difference schemes for solving problems of photoabsorption convection problems in rectangular cavities are discussed in [12]. The present article is devoted to an investigation of the threshold intensities of light for the excitation of photoabsorption convection. The existence of critical intensities of light, above which the mechanically equilibrium states of the liquids absorbing the light become unstable, was demonstrated in [1, 4].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 128–135, September–October, 1971.The authors thank A. V. Lykov for his continuing interest and aid, and G. I. Petrov and V. I. Polezhaev for their useful evaluation of the work.  相似文献   

14.
The effect of high-frequency vibrations on the stability of a cylindrical liquid interface is studied. In the absence of external disturbances the interface will be unstable if the length of the liquid cylinder exceeds the length of the normal boundary section. It is shown that vibrations circularly polarized in the plane of the normal section can suppress the development of instability however great the length of the liquid cylinder. The effect of the density ratio of the liquids and the dimensions of the rigid outer shell on the stability of the system is investigated. It is shown that vibrations can stabilize the cylindrical interface only if the radius of the shell is not too great as compared with the radius of the liquid cylinder. The critical value of the radius ratio is approximately equal to 1.58 and does not depend on the density ratio of the liquids.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 3–7, November–December, 1991.  相似文献   

15.
The article discusses the three-dimensional problem of unsteady-state waves arising on a free surface and at the interface between two liquids of different densities, with motion of the source. Analogous problems for steady-state waves in a two-layer liquid have been investigated in [1–6], and for unsteady-state waves in a homogeneous liquid in [7, 8].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 137–146, July–August, 1970.  相似文献   

16.
The characteristics of the motion of a particle in an electrically conducting liquid with constant crossed electric and magnetic fields present have been investigated in connection with the problem of MHD-separation in many papers (for example, see the bibliography in [1]). The separation of electrically conducting particles contained in a dielectric liquid, which can be accomplished with the help of a variable magnetic field [2], is also of practical interest. The ponderomotive force acting on a spherical conducting particle near a straight conductor through which the discharge current of a capacitor bank is flowing is found in this paper, and the motion of a particle in a viscous liquid under the action of this force is investigated.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 6, pp. 31–34, November–December, 1984.  相似文献   

17.
The theoretical study of nonisothermal flows of magnetizable liquids presents serious matheical difficulties, which are intensified as compared to to the study of normal liquids by the necessity of simultaneous solution of both the hydrodynamics and Maxwell's equations, with corresponding boundary conditions for the magnetic field. Thus, in most cases problems of this type are solved by neglecting the effect of the liquid's nonisothermal state on the field distribution within the liquid, and also, as a rule, with use of an approximate solution for Maxwell's equations and fulfillment of the boundary conditions for the field [1–3]. The present study will present easily realizable practical formulations of the problem which permit exact one-dimensional solutions of the complete system of the equations of thermomechanic s of electrically nonconductive incompressible Newtonian magnetizable liquids with constant transfer coefficients. A common feature of the formulations is the presence of a longitudinal temperature gradient along the boundaries along which liquid motion is accomplished. Plane-parallel convective flows of this type in a conventional liquid and their stability were considered in [4–6].Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 126–133, May–June, 1979.  相似文献   

18.
The propagation of small perturbations in raulticomponent disperse media consisting of an uncharged dispersion fluid, positive and negative ions and charged particles or droplets of another fluid is investigated. When weak waves pass through emulsions and suspensions, because of the difference in the velocities of the ions and charged particles a non-uniform distribution of electric potential develops in the medium [1–3]. Expressions relating the amplitude of the electric potential and the amplitude of the fluid velocity in the wave, the particle charge and the parameters characterizing the medium are derived. Relations are obtained for the phase shift between the values of the electric potential and the fluid velocity. It is proposed to use the expressions obtained, which describe the propagation of ultrasound, for the experimental determination of the particle charge and other parameters of the disperse medium, in particular, the particle size.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 122–128, January–February, 1988.  相似文献   

19.
A study is made of the charging of highly conducting particles in disperse media. To this end, in the case of a small volume concentration of particles, there is a study, within the framework of electrohydrodynamics [1, 2], of the charging of an ideally conducting spherical particle in a unipolar charged gas. It is assumed that the particle is at rest relative to the gas, and its size and ion concentration are fairly small, so that the electric self-field of the ions may be neglected. A computer was used to calculate the dependences of the charging current on the charge of the particle for various values of the external electric field intensity. A comparison is made with the experimental data on the charging of particles [3].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 177–180, January–February, 1986.The author wishes to express his gratitude to L. T. Chernyi for formulating the problem, and to V. V. Gogosov for a useful discussion of the results.  相似文献   

20.
In an inhomogeneously heated weakly conductive liquid (electrical conductivity 10–12–1 cm–1) located in a constant electric field a volume charge is induced because of thermal inhomogeneity of electrical conductivity and dielectric permittivity. The ponderomotive forces which develop set the liquid into intense motion [1–6]. However, under certain conditions equilibrium proves possible, and in that case the question of its stability may be considered. A theoretical analysis of liquid equilibrium stability in a planar horizontal condenser was performed in [2, 4]. Critical problem parameters were found for the case where Archimedean forces are absent [2]. Charge perturbation relaxation was considered instantaneous. It was shown that instability is of an oscillatory character. In [4] only heating from above was considered. Basic results were obtained in the limiting case of disappearingly small thermal diffusivity in the liquid (infinitely high Prandtl numbers). In the present study a more general formulation will be used to examine convective stability of equilibrium of a vertical liquid layer heated from above or below and located in an electric field. For the case of a layer with free thermally insulated boundaries, an exact solution is obtained. Values of critical Rayleigh number and neutral oscillation frequency for heating from above and below are found Neutral curves are constructed. It is demonstrated that with heating from below instability of both the oscillatory and monotonic types is possible, while with heating from above the instability has an oscillatory character. Values are found for the dimensionless field parameter at which the form of instability changes for heating from below and at which instability becomes possible for heating from above.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 16–23, September–October, 1976.In conclusion, the author thanks E. M. Zhukhovitskii for this interest in the study and valuable advice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号