首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以短链阳离子三聚表面活性剂C10H21N+(CH3)2(CH2)2N+(CH3)(C10H21)(CH2)2N+(CH3)2C10H21]·3Br?为结构导向剂, 通过2,7-二(3-三乙氧硅基氨丙酯基)萘(NIS)和四乙氧基硅烷(TEOS)共缩聚, 制备了有序的萘基桥联的杂化周期性介孔有机硅(PMOs). 样品通过X射线衍射(XRD)、高分辨透射电镜(HRTEM)、氮气吸附-脱附、差示扫描量热/热重分析(DSC/TGA)表征. 结果表明, 当NIS占NIS和TEOS总量40% (摩尔分数)时, 可以形成具有结晶态孔壁的有序介孔杂化材料. 当NIS含量低于或高于40%时, 分别形成无定形孔壁的有序介孔杂化材料和无孔杂化材料. 随着孔壁中萘基基团的增加, 由于有机基团之间π-π堆积作用增强, 杂化介孔材料显示良好的热稳定性. 由于在二氧化硅骨架中嵌入荧光萘基基团, 杂化有机-无机有序介孔材料显示了激基缔合物的光学行为. 随萘基基团含量的增加, 杂化材料的紫外吸收峰发生蓝移, 形成H聚集体; 由于聚集引起的荧光淬灭, 杂化材料的荧光量子产率明显降低.  相似文献   

2.
Organic–inorganic hybrid materials have been used as fillers to reinforce dental resin composites, which require strengthening to improve their performance in large stress-bearing applications such as crowns and multiple-unit restorations. Homogeneous organic–inorganic hybrid materials with high performance were prepared by mixing 3-methacryloxypropyltrimethoxysilane (MPTS) and tetraethylorthosilicate (TEOS) synthesized by the sol–gel route. The matrix was prepared by hydrolyzing and condensing the TEOS and MPTS, using basic catalysis and excess water. The resulting xerogel was treated at 50, 100, 150, and 200 °C for 4 h, and the structure was analyzed by thermogravimetry (TG/DTA), photoluminescence (PL), nuclear magnetic resonance (NMR 29Si and 13C), transmission electron microscopy (TEM), infrared spectroscopy (IR), and Raman spectroscopy. The PL spectra displayed the Eu3+ lines characteristic of 5D07FJ (J = 0, 1, 2, 3, 4) ions, and the blue emission was ascribed to the silica matrix. TG, MNR and infrared spectroscopy analyses indicated the hybrid silica was stable, with the organic part present up to 150 °C. Increasing the temperature of the heat treatment was found to increase the degree of hydrolysis. The size and morphology of the silica particles were identified by TEM.  相似文献   

3.
碳氟基团修饰的疏水微孔二氧化硅膜制备与表征   总被引:3,自引:0,他引:3  
采用三氟丙基三乙氧基硅烷(TFPTES)和正硅酸乙酯(TEOS)作为前驱体,通过溶胶-凝胶法制备了三氟丙基修饰的SiO2膜材料。利用扫描电镜、N2 吸附、 红外光谱仪以及视频光学接触角测量仪对膜的断面形貌、孔结构以及疏水性能进行了表征。结果表明,随着三氟丙基三乙氧基硅烷加入量的增大,膜的疏水性逐渐增强,膜的孔结构基本保持不变。当TFPTES/TEOS的摩尔比例达到0.6时,膜对水的接触角达到 111.6°±0.5º,膜材料仍保持良好的微孔结构,其孔体积为0.19cm3•g-1,孔径为0.97nm。  相似文献   

4.
Highly ordered hexagonal mesoporous silica materials (JLU-20) with uniform pore sizes have been successfully synthesized at high temperature (150-220 degrees C) by using fluorocarbon-hydrocarbon surfactant mixtures. The fluorocarbon-hydrocarbon surfactant mixtures combine the advantages of both stable fluorocarbon surfactants and ordered hydrocarbon surfactants, giving ordered and stable mixed micelles at high temperature (150-220 degrees C). Mesoporous JLU-20 shows extraordinary stability towards hydrothermal treatment (100 % steam at 800 degrees C for 2 h or boiling water for 80 h), thermal treatment (calcination at 1000 degrees C for 4 h), and toward mechanical treatment (compressed at 740 MPa). Transmission electron microscopy images of JLU-20 show well-ordered hexagonal arrays of mesopores with one-dimensional (1D) channels and further confirm that JLU-20 has a two-dimensional (2D) hexagonal (P6 mm) mesostructure. 29Si HR MAS NMR spectra of as-synthesized JLU-20 shows that JLU-20 is primarily made up of fully condensed Q4 silica units (delta=-112 ppm) with a small contribution from incompletely cross-linked Q3 (delta=-102 ppm) as deduced from the very high Q4/Q3 ratio of 6.5, indicating that the mesoporous walls of JLU-20 are fully condensed. Such unique structural features should be directly attributed to the high-temperature synthesis, which is responsible for the observed high thermal, hydrothermal, and mechanical stability of the mesoporous silica materials with well-ordered hexagonal symmetry. Furthermore, the concept of "high-temperature synthesis" is successfully extended to the preparation of three-dimensional (3D) cubic mesoporous silica materials by the assistance of a fluorocarbon surfactant as a co-template. The obtained material, designated JLU-21, has a well-ordered cubic Im3m mesostructure with fully condensed pore walls and shows unusually high hydrothermal stability, as compared with conventional cubic mesoporous silica materials such as SBA-16.  相似文献   

5.
Fluorescent labeling based on silica nanoparticles facilitates unique applications in bioanalysis and bioseparation. Dye-doped silica nanoparticles have significant advantages over single-dye labeling in signal amplification, photostability and surface modification for various biological applications. We have studied the formation of tris(2,2'-bipyridyl)dichlororuthenium(II) (Ru(bpy)) dye-doped silica nanoparticles by ammonia-catalyzed hydrolysis of tetraethyl orthosilicate (TEOS) in water-in-oil microemulsion. The fluorescence spectra, particle size, and size distribution of Ru(bpy) dye-doped silica nanoparticles were examined as a function of reactant concentrations (TEOS and ammonium hydroxide), nature of surfactant molecules, and molar ratios of water to surfactant (R) and cosurfactant to surfactant (p). The particle size and fluorescence spectra were dependent upon the type of microemulsion system chosen. The particle size was found to decrease with an increase in concentration of ammonium hydroxide and increase in water to surfactant molar ratio (R) and cosurfactant to surfactant molar ratio (p). This optimization study of the preparation of dye-doped silica nanoparticles provides a fundamental knowledge of the synthesis and optical properties of Ru(bpy) dye-doped silica nanoparticles. With this information, these nanoparticles can be easily manipulated, with regard to particle size and size distribution, and bioconjugated as needed for bioanalysis and bioseparation applications.  相似文献   

6.
Thermal stability on a mixture of triblock polymer (P123) and fluorocarbon surfactant (FC-4) in acidic media for synthesis of ordered mesoporous materials has been carefully investigated by NMR spectroscopy at various treated temperatures (RT-180 degrees C) and the templating mechanism of the mixture on high-temperature synthesis has been proposed. Accordingly, we have designed fluorocarbon-free templates for syntheses of ordered mesoporous silica materials at high temperatures. As expected, ordered mesoporous silica materials with high degree of silica condensation are synthesized at high temperatures from these designed templates.  相似文献   

7.
Silica spheres with uniform size of 230–250 nm were functionalized with sulfonic groups and bi-functionalized with carboxylic and sulfonic groups via a co-condensation route, by adding the organosilanes (3-(triethoxysilyl)mercaptopropyl and 4-(triethoxysilyl)butyronitrile) to a pre-hydrolized TEOS solution. The conversion of mercapto and cyano groups to, respectively, sulfonic and carboxylic groups was carried out by treating both the samples with nitric acid solution. The presence of alkyl-SO3H and alkyl-COOH species at the silica surface in an approximate molar ratio of 1:1 was assessed by TG and NMR. FT-IR spectroscopy showed that both Brønsted acidic groups are accessible and give proton-transfer reaction to ammonia with the formation of ammonium ion. Sulfonic groups react irreversibly with ammonia at room temperature at variance with carboxylic groups which give a reversible proton-transfer, in agreement with the stronger Brønsted acidity of the former.  相似文献   

8.
The experimental results on the organic modification of tetraethoxysilane (TEOS) based silica aerogels synthesized by co-precursor and derivatization methods are reported and discussed. In order to obtain silica aerogels with better physicochemical properties in terms of higher hydrophobicity, optical transmission and thermal stability, eight organosilane compounds (hydrophobic reagents) of the type R n SiX4–n have been used. The molar ratio of tetraethoxysilane (TEOS), ethanol (EtOH), water (0.001 M oxalic acid catalyst) was kept constant at 1:5:7 respectively. The organically modified silica aerogels were produced by two different methods: (i) Co-precursor method and (ii) Derivatization method. In the former method, the molar ratio of hydrophobic reagent (HR) to TEOS was varied from 0.1 to 0.6. In the later method, derivatization of the wet gels was carried out using 20% hydrophobic reagent in methanol. The merits and demerits of both these methods have been presented. The organic surface modification of the aerogels was confirmed by the Fourier Transform Infrared (FTIR) spectroscopic studies and the contact angle measurements. In the co-precursor method, with the increase in hydrophobic reagent/TEOS molar ratio, the hydrophobicity increases ( = 136°) and the optical transmission decreases (5%), whereas in the derivatization method the optical transmission is very high (T 85%) but the hydrophobicity is low ( = 120°). The thermal stability of the hydrophobic aerogels (the temperature up to which the hydrophobicity is retained) was studied in the temperature range of 25–800°C. The aerogels based on the co-precursor method retained the hydrophobicity up to a temperature as high as 520°C and on the other hand, the derivatized aerogels are hydrophobic only up to a temperature of 285°C. For the first time, TEOS based hydrophobic silica aerogels have been obtained with negligible volume shrinkage using the trimethylethoxysilane (TMES) co-precursor. The aerogels were characterized by Fourier transform infrared spectroscopy (FTIR), optical transmittance, Scanning Electron Microscope (SEM), thermogravimetric (TG) and differential thermal (DT) analyses and the contact angle measurements.  相似文献   

9.
Ordered porous silicas with unprecedented loadings of pendant vinyl groups have been synthesized via co-condensation of tetraethyl orthosilicate (TEOS) and triethoxyvinylsilane (TEVS) under basic conditions in the presence of cetyltrimethylammonium surfactant. The resulting organosilicate-surfactant composites exhibited at least one low-angle X-ray diffraction (XRD) peak up to the TEVS:TEOS molar ratio of 7:3 (70% TEVS loading) in the synthesis gel. The surfactant was removed from these composites without any structural collapse. Nitrogen adsorption provided strong evidence of the presence of uniformly sized pores and the lack of phase separation up to TEVS:TEOS ratios as high as 13:7 (65% TEVS loading), whereas (29)Si MAS NMR and high-resolution thermogravimetry showed essentially quantitative incorporation of the organosilane. Thus, a hitherto unachieved loading level for pendant groups, considered by many to be impossible to achieve for stable organosilicas because of the expected framework connectivity constraints, has been obtained. The resulting vinyl-functionalized silicas exhibited gradually decreasing pore diameter (from 2.8 to 1.7 nm for TEVS loadings of 25-65%) and pore volume as the loading of pendant groups increased, but the specific surface area was relatively constant. Because of the reactivity of vinyl groups, ordered silicas with very high loadings of these groups are expected to be robust starting materials for the synthesis of other organic-functionalized ordered microporous materials. Herein, we demonstrate that these starting materials can also be transformed via calcination into ordered microporous silicas with pore diameters tailorable from 2.5 to as little as 1.4 nm simply by using an appropriate loading of the vinyl-functionalized precursor. This ease of the micropore size adjustment and the attained degree of structural ordering (as judged from XRD) have not been reported before. The novel ordered microporous materials reported herein are promising as adsorbents and catalyst supports.  相似文献   

10.
A new series of carbamothioic acid‐containing periodic mesoporous organosilica (PMO) materials has been synthesized by a direct cocondensation method, in which an organosilica precursor N,S‐bis[3‐(triethoxysilyl)propyl]carbamothioic acid (MI) is treated with tetraethyl orthosilicate (TEOS), and the nonionic surfactant Pluronic 123 (P123) is used as a template under acidic conditions in the presence of inorganic additives. Moreover, the synthesis of the PMO material consisting of the MI precursor without TEOS has been realized. These novel PMO materials have large surface areas, well‐ordered mesoporous structures, hollow fiberlike morphologies, and thick walls. They are also structurally well‐ordered with a high organosilica precursor content, and the carbamothioic acid groups are thermally stable up to 250 °C. Furthermore, the organosilica materials exhibit hydrothermal stability in basic solution.  相似文献   

11.
SBA-15 mesoporous silica has been functionalized with aminopropyl groups through a simple co-condensation approach of tetraethyl orthosilicate (TEOS) and (3-aminopropyl)triethoxysilane (APTES) using amphiphilic block copolymers under acidic conditions. The organic-modified SBA-15 materials have hexagonal crystallographic order, pore diameter up to 60 A, and the content of aminopropyl groups up to 2.3 mmol g(-1). The influences of TEOS prehydrolysis period and APTES concentration on the crystallographic order, pore size, surface area, and pore volume were examined. TEOS prehydrolysis prior to the addition of APTES was found essential to obtain well-ordered mesoporous materials with amino functionality. The amount of APTES incorporated in the silica framework increased with the APTES concentration in the synthesis gel, while the ordering of the mesoporous structure gradually decreased. Analysis with TG, IR, and solid state NMR spectra demonstrated that the aminopropyl groups incorporated in SBA-15 were not decomposed during the preparation procedure and the surfactant P123 was fully removed through ethanol extraction. The modified SBA-15 was an excellent base catalyst in Knoevenagel and Michael addition reactions.  相似文献   

12.
Mesoporous SBA-16 and SBA-15 were studied in order to control their possible morphologies. SBA-16 is synthesized using a silicon source (tetraethoxysilane, TEOS) and a ternary system consisting of surfactant F127 (EO106PO70EO106), water, and butanol. The same ternary system, with higher butanol concentration, is used to form SBA-15 material as well. An increase of the TEOS concentration results in a morphology shift of SBA-16 from micron-sized spheres, over randomly shaped aggregated particles, to macrospheres with a size of 15 mm. An identical increase in TEOS concentration also results in the formation of SBA-15 macrospheres, which can be controlled in size. Micron-sized spheres of SBA-15 were formed using a quaternary system of surfactant P123 (EO20PO70EO20), cetyltrimethylammonium bromide (CTAB), ethanol, and water. All mesoporous silica materials were characterized using SEM, XRD, and N2 sorption techniques.  相似文献   

13.
Polymer microspheres with mercapto groups were synthesized by polycondensation of 1,6-dibromohexane and 1,3-propanedithiol in the presence of a polystyrene latex and a nonionic surfactant. The sulfur content of the obtained particles is comparable with the one calculated according to the feed ratio, which shows that the polycondensation proceeds quantitatively in the particles. A higher molar ratio of dithiol against dibromide used in the polycondensation results in microspheres with higher mercapto group content.  相似文献   

14.
聚丙烯酸控制合成的聚合物/二氧化硅复合纳米球   总被引:1,自引:0,他引:1  
以3-氨丙基三甲氧基硅烷(APMS)和正硅酸乙酯(TEOS)为硅源, 与阴离子聚合物聚丙烯酸(PAA)链之间通过S-N+-I-机理组装合成了聚丙烯酸-二氧化硅(PAA/SiO2)复合纳米球. SEM, TEM, TG和FTIR表征结果表明, 合成的纳米球是聚丙烯酸和二氧化硅复合物, 平均直径约为80 nm. 在合成PAA/SiO2复合纳米球的体系中, 加入不同量的有机溶剂THF能够调控复合球的尺度.  相似文献   

15.
Three silica-based organic-inorganic hybrid systems composed of hydroxyl aromatic derivatives (2-acetylphenol [HAP], 2-hydroxy-3-methylbenzoic acid [HMBA], 3-hydroxy-meta-phthalic acid [HMPHTH] complexes) were prepared via a sol-gel process. The active hydroxyl groups of the three ligands grafted by 3-(triethoxysilyl)-propyl isocyanate (TESPIC) through hydrogen transfer addition reaction were used as multi-functional bridge components, which can coordinate to Tb3+ with carbonyl groups, strongly absorb ultraviolet light and effectively transfer energy to Tb3+ through their triplet excited state, as well as undergo polymerization or crosslinking reactions with tetraethoxysilane (TEOS), for anchoring terbium ions to silica backbone. NMR, FT-IR, UV-vis absorption, luminescence spectroscopy was used to investigate the obtained hybrid material. UV excitation in the organic component resulted in strong green emission from Tb3+ ions due to an efficient ligand-to-metal energy transfer mechanism.  相似文献   

16.
Synthesis of carboxyl-modified rod-like SBA-15 by rapid co-condensation   总被引:1,自引:0,他引:1  
Carboxyl-modified SBA-15 rod-like mesoporous materials have been synthesized by a facile rapid co-condensation of tetraethylorthosilicate (TEOS) and 2-cyanoethyltriethoxysilane (CTES), followed by hydrolysis of cyanide groups in sulfuric acid. The concentration of carboxylic groups was varied by changing the silica source ratio of CTES/TEOS from 0.05 to 0.3. X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed that the uniform ordered mesoporous structure and rod-like morphology of SBA-15 have been preserved even at the high concentration of carboxylic groups employed. Characterization by Fourier transformed infrared spectroscopy (FTIR), solid-state NMR investigation indicated that carboxylic groups have been successfully grafted onto the surface of SBA-15 through siloxane bonds [(O(3))SiCH(2)CH(2)COOH. The negative charges of the modified SBA-15 materials were enhanced by the presence of the carboxylic groups on the surface. The capacity of lysozyme adsorption of the modified SBA-15 materials were found to be significantly improved as compared with pure silica SBA-15. The maximum amount of lysozyme adsorption on carboxyl-modified was increased with the pH of solution increased from 5.5 to 9.0.  相似文献   

17.
Vinyl triethoxysilane (VTES) and (meth)acrylate monomers were mixed to create covalently bonded inorganic/organic copolymers, with and without tetraethyl orthosilicate (TEOS). Vinyl groups underwent free radical polymerization along with copolymerization with (meth)acryl groups of the monomer. For the two-monomer system, (meth)acrylate monomer and VTES, polymerization resulted in mechanically strong copolymers with flexure strengths greater than 40 MPa. Three-component materials obtained by polymerization of (meth)acrylate monomer, VTES and TEOS were homogeneous, highly transparent, with flexure strengths similar to those for silica xerogels, about 20 Mpa.  相似文献   

18.
Mesoporous amine-functionalized SBA-15 silica has been synthesized directly by the co-condensation of tetraethyl orthosilicate (TEOS) and aminopropyl-trimethoxysilane (APTMS) under acidic conditions with an APTMS/(APTMS + TEOS) molar ratio of 10%. The effect of synthesis conditions, including TEOS pre-hydrolysis, as well as the heating temperature and time, on the mesoscopical order and pore structure of the functionalized SBA-15 have been studied in detail by means of powder X-ray diffraction, nitrogen sorption, transmission electron microscopy, infrared spectra and solid state 29Si nuclear magnetic resonance. A functionalized SBA-15 silica with a highly ordered two-dimensional P6 mm hexagonal symmetry and a narrow pore size distribution centered at 6 nm can be obtained if TEOS is allowed to pre-hydrolyze for 2 h. For the sample with TEOS pre-hydrolysis time of 4 h, aging at 50°C or 150°C leads to a more ordered pore arrangement compared to 100°C and also a narrower pore size distribution with larger pore volume. Increasing aging time is in favor of the formation of mesoscopically ordered structure, but fails to obtain a superior pore structure.  相似文献   

19.
Using the ABC copolymer silicone surfactant polydimethylsiloxane (PDMS)-graft-(polyethylene oxide (PEO)-block-propylene oxide (PPO)) (PSEP, Scheme 1a) as a template and tetraethoxysilane (TEOS) as a silica source, silica particles with various structures and morphologies (i.e., disordered spherical micellar aggregation, two-dimensional p6mm mesostructure, asymmetric multi-layer non-equilibrium vesicles and symmetric monolayer vesicles) were synthesized by changing the synthesis temperature from 30 to 80 °C. Increasing the hydrophobicity of the surfactant by increasing the temperature resulted in an increase in the surfactant packing parameter g, which led to the mesophase transformation from micellar to cylinder and later to a lamellar structure. The good compatibility between the PDMS and the TEOS, the different natures of the hydrophobic PDMS and PPO segments, and the hydrolysis and condensation rates of TEOS enabled the variation of silicification structures. This novel silicone surfactant templating route and a new type of materials with highly ordered mesostructures and asymmetric morphologies provide a new insight into the molecular factors governing inorganic-organic mesophase and biosilicification for fabricating functionalized materials.  相似文献   

20.
The conservation of historic sculptures is receiving growing attention because of the increasing air pollution. A hydrophobic silica coating was synthesized to protect historic sculptures from weathering by starting from a solution of tetraethoxyorthosilicate (TEOS) precursor using hexadecyltrimethoxysilane (HDTMS) as hydrophobic modifier in the presence of ammonia as a catalyst. The molar ratio of ethanol, TEOS, H2O and NH4OH was kept constant at 8:0.045:3:2.8 and the molar ratio of HDTMS/TEOS (M) was varied from 0 to 0.458. The organic modification was confirmed by infrared spectroscopic studies, and the hydrophobicity of the coating was tested by the contact angle measurements. The stone surface morphology of sample treated with silica coating was characterized. The results showed that the nanocomposites were composed of spherical particles with grain size of about 190 nm in diameter. After the limestone's surface was modified, the contact angle of limestone increased from 20° to 100° for M0.458. The protective performance evaluated with its ability to resist acid rain reveals that the protective effects are satisfying.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号