首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Aliphatic hydrocarbons (HCs) can be used as a fingerprint of a given seed oil. Only by characterization of aliphatic HCs could contamination by mineral oil in that seed oil be confirmed. During the isolation of squalene from soybean oil deodorizer distillate, a significant amount of unknown HCs, ca. 44 wt%, was obtained. These seemingly‐easy‐to‐identify HCs turned out to be much more difficult to elucidate due to the presence of an irresolvable complex mixture (ICM). The objective of this study was to purify and identify the unknown ICM of aliphatic HCs from soybean oil deodorizer distillate. Purification of the ICM was successfully achieved by using modified Soxhlet extraction, followed by modified preparative column chromatography, and finally by classical preparative column chromatography. FT‐IR, TLC, elemental analysis, GC/FID, NMR and GC‐MS analyses were then performed on the purified HCs. The GC chromatogram detected the presence of ICM peaks comprising two major peaks and a number of minor peaks. Validation methods such as IR and NMR justified that the unknowns are saturated HCs. This work succeeded in tentatively identifying the two major peaks in the ICM as cycloalkane derivatives.  相似文献   

2.
全二维气相色谱(GC×GC)是20世纪90年代发展起来的具有高分辨率、高灵敏度、高峰容量等优势的分离技术,在我国将其用于大气挥发性有机物(VOCs)研究方面才刚刚起步.本文将GC-GC与氢火焰离子化检测器(FID)联用,构建了用于测量大气有机物的热脱附-全二维气相色谱-氢火焰离子化分析系统(TD-GC×GC-FID).采用HP-5MS和HP-INNOWAX色谱柱,建立了C5-C15大气有机物分析方法,实现了一次分析过程同时分离非甲烷烃(NMHCs)、含氧挥发性有机物(OVOCs)和卤代烃等多种组分.利用标准物质和四级杆质谱(qMS)进行定性,外标法结合FID质量校正因子定量.目标物在GC-GC谱图中第一和第二维保留时间变化分别小于0.6s和0.02s,峰体积平均相对标准偏差为14.3%,其中烷烃和芳香烃为4.5%.标准曲线r2均值大于0.99,平均检出限为6.04ng,平均回收率为111%.利用该方法检测到2010年1月北京市区大气中400多种有机物(信噪比大于50),鉴定了其中的103种物质,包括烷烃、烯烃、芳香烃、卤代烃、醛、酮、酯、醇和醚等.所测定有机物平均总浓度为51.3×10-9V/V,其中OVOCs约占51%,芳香烃约占30%,烷烃约占15%,卤代烃和烯烃分别占3%和1%.平均浓度最高的前3个组分是乙醇(9.84×10-9V/V)、丙酮(6.72×10-9V/V)和甲苯(3.48×10-9V/V).  相似文献   

3.
The essential oil from leaves of Croton gossypiifolius Vahl. (Euphorbiaceae) was obtained by hydrodistillation, and analyzed by GC/FID and GC/MS. The constituents were identified by their mass spectra and Kovats' indices. Fifty-one compounds accounting for 92% of the oil were detected, and 47 of them were identified. The oil was dominated by oxygenated sesquiterpenes with the major presence of alpha-cedrene oxide (18.6%), spathulenol (16.3%), valencene (5.8%), geranyl-pentanoate (5.3%), alpha-cadinol (4.0%), germacrene D (3.5%) and longifolene (3.3%).  相似文献   

4.
For the simple and fast preparation of highly reliable standard materials, a post-column reaction GC/FID system was developed and evaluated on the mixture of oxygen-containing organic compounds. The oxygen-containing organic compounds mixing solution were determined with the post-column reaction GC/FID system using n-dodecane as an internal calibration standard. Required value of relative expanded uncertainty as an original source of SI-traceable standard materials was within 1% and it aimed at this value as accuracy of the quantitative analysis. The results showed good agreement between the prepared concentrations and analytical values using post-column reaction GC/FID system. These results indicated that the post-column reaction GC/FID system would be used for getting SI-traceable values.  相似文献   

5.
An automatic sampling device, i.e., process sampling module (PSM), connected with a purge and trap-GC-FID system has been developed for real-time monitoring of VOCs in wastewater. The system was designed to simultaneously monitor 17 compounds, including one polar compound, i.e., acetone, and 16 non-polar compounds. The trapping tube is packed with two adsorbents, Carbopack B and Carbosieve III, to trap target compounds. For the purpose of in situ monitoring, the flush valve of the sampling tube is composed of two two-way valves and a time controller to prevent absorption interference of the residue. The optimal conditions for the analytical system include a 12 min purge time at a temperature of 60 °C, and 4 min of desorption time with a desorption temperature of 260 °C. Good chromatograms have been obtained with the analytical system even if a cryogenic device and de-misting were not used. The relative standards deviation (RSD) of the system is between 2% and 13.4%, and accuracies between 0.3 and 23.5% have been achieved. The detection limits of the method range from 0.32 to 2.39 ppb. In this system, the four parts, i.e., PSM, P&T, GC, and FID, were simple, reliable and rugged. Also, the interface of these four parts was simple and dependable.  相似文献   

6.
Two approaches based on solidification of floating drop microextraction (SFDME) and homogenous liquid–liquid microextraction (HLLE) were compared for the extraction and preconcentration of di‐(2‐ethylhexyl) phthalate (DEHP) and di‐(2‐ethylhexyl) adipate (DEHA) from the mineral water samples. In SFDME, a floated drop of the mixture of acetophenone/1‐undecanol (1:8) was exposed on the surface of the aqueous solution and extraction was permitted to occur. In HLLE, a homogenous ternary solvent system was used by water/methanol/chloroform and the phase separation phenomenon occurred by salt addition. Under the optimal conditions, the LODs for the two target plasticizers (DEHA and DEHP), obtained by SFDME–GC‐FID and HLLE–GC‐FID, were ranged from 0.03 to 0.01 μg/L and 0.02 to 0.01 μg/L, respectively. HLLE provided higher preconcentration factors (472.5‐ and 551.2‐fold) within the shorter extraction time as well as better RSDs (4.5–6.9%). While, in SFDME, high preconcentration factors in the range of 162–198 and good RSDs in the range of 5.2–9.6% were obtained. Both methods were applied for the analysis of two plasticizers in different water samples and two target plasticizers were found in the bottled mineral water after the expiring time and the boiling water was exposed to a polyethylene vial.  相似文献   

7.
色谱与色谱/质谱法相结合分析热裂解汽油C9馏分   总被引:3,自引:0,他引:3  
王华  刘文民  徐媛  关亚风 《色谱》2006,24(6):615-618
采用毛细管气相色谱-氢火焰离子化检测器(CGC-FID)和气相色谱-质谱法(GC/MS)分析了热裂解汽油C9 馏分的组成。实验使用PONA毛细管气相色谱柱(100 m×0.25 mm i.d.×0.5 μm),根据烃类化合物在PONA柱上的保留规律,以正构烷烃标样保留值作为碳数分布依据,定量分析了裂解汽油C9 馏分中烃类化合物的碳数分布和单体烃含量;用GC/MS联用技术和CGC保留值定性法相结合对裂解汽油C9 馏分中相对含量大于0.2%的39种化合物进行了定性。  相似文献   

8.
The present research is focused on the determination of the enantiomeric distribution of chiral compounds, contained in mandarin essential oils, by means of conventional chiral gas chromatography with flame ionization detection (enantio-GC-FID); the results attained were compared with those derived from heart-cutting multidimensional GC-mass spectrometry (MDGC/MS), to evaluate the reliability of the monodimensional technique as a tool for quality control. The Deans-switch MDGC system was equipped with two GC ovens, which were connected via a heated transfer line, a flame ionization detector (FID1) in the first dimension and a quadrupole MS as second-dimension detector. The a priori knowledge of potential co-elutions concerning target compounds (an enantiomer and an interfering compound), when using enantio-GC-FID, could enable the use of corrected enantiomer excess values. Correction factors could be calculated through a preliminary GC-FID analysis (using an apolar column), considering the peak areas of the known interferences. The method used for the calculation of a so-called “coelution correction factor” is described, along with some examples.  相似文献   

9.
《Analytical letters》2012,45(15):2311-2317
The present work describes the methodology and validation of gas chromatography with flame ionization (FID) and mass spectrometric (MS) detection after derivatization with N-Methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA) for determination of atenolol with an internal standard (metoprolol) in pharmaceutical preparations. The linearity was established over the concentration range of 0.5–20 μg/mL for GC/FID and 12.5–500 ng/mL for GC/MS method. The intra- and inter-day relative standard deviation was less than 4.72 and 5.80%, respectively. Limit of quantification was determined as 500 ng/mL and 12.5 ng/mL for GC/FID and GC/MS, respectively. No interference was found from tablet excipients at the selected assay conditions. Developed GC/FID and GC/MS methods in this study are accurate, sensitive, and precise and can be easily applied to Tensinor tablet as pharmaceutical preparation.  相似文献   

10.
For the first time a dispersive liquid–liquid microextraction method on the basis of an extraction solvent lighter than water was presented in this study. Three organophosphorus pesticides (OPPs) were selected as model compounds and the proposed method was carried out for their preconcentration from water samples. In this extraction method, a mixture of cyclohexane (extraction solvent) and acetone (disperser) is rapidly injected into the aqueous sample in a special vessel (see experimental section) by syringe. Thereby, a cloudy solution is formed. In this step, the OPPs are extracted into the fine droplets of cyclohexane dispersed into aqueous phase. After centrifuging the fine droplets of cyclohexane are collected on the upper of the extraction vessel. The upper phase (0.40 μL) is injected into the gas chromatograph (GC) for separation. Analytes were detected by a flame ionization detector (FID) (for high concentrations) or MS (for low concentrations). Some important parameters, such as the kind of extraction and dispersive solvents and volume of them, extraction time, temperature, and salt amount were investigated. Under the optimum conditions, the enrichment factors (EFs) ranged from 100 to 150 and extraction recoveries varied between 68 and 105%, both of which are relatively high over those of published methods. The linear ranges were wide (10–100 000 μg/L for GC‐FID and 0.01–1 μg/L for GC‐MS) and LODs were low (3–4 μg/L for GC‐FID and 0.003 μg/L for GC‐MS). The RSDs for 100.0 μg/L of each OPP in water were in the range of 5.3–7.8% (n = 5).  相似文献   

11.
This paper reports the results of an analytical study comparing capillary gas chromatography (GC) operated in the normal mode with 2 new GC techniques, comprehensive GC (GC x GC) and targeted (or selective) multidimensional GC, which use a longitudinally modulated cryogenic system (LMCS), recently developed in our laboratory. A high-temperature application of derivatized sterols, of interest in fecal pollution monitoring, was chosen for this work. A directly connected coupled-column ensemble was used, comprising a nonpolar column and a moderately polar column. With LMCS, effluent from the first column is zone-compressed in a cryogenic trap and then pulsed to a short second column, producing narrower peaks with sharp, tall peak responses at the detector. The modulator is operated at a constant frequency, e.g., 0.25 s(-1), to produce the GC x GC result, or is moved in a predefined manner so that whole peaks are selectively trapped and subsequently pulsed through to the second column in the targeted mode. Standard solutions containing a mixture of 7 sterols and 5-alpha-cholestane internal standard were used. Detection sensitivity is increased by a factor of >25 with the use of LMCS. The estimated limit of detection was about 0.1 microg/mL when normal GC with flame ionization detection (GC/FID) and a 1.0 microL splitless injection volume were used, compared with 0.02 and 0.004 microg/mL for the LMCS operated in GC x GC and selective modes, respectively. Calibration curves for GC/FID were linear over the 0.1-2.0 microg/mL range tested. Reproducibilities for the GC x GC and normal GC modes were comparable; generally, relative standard deviations (RSD) were on the order of 3-4%, based on raw peak responses. Improved reproducibility was found for selective LMCS operation, at an RSD of around 2%; with internal standardization, better results were achieved. The coupled-column arrangement allowed complete separation of sterol peaks from overlapping impurity peaks in a number of instances with LMCS modes, and its use should improve data quality over that of normal GC operation, in which the overlapping peaks interfere with measurement of peak response in the normal mode.  相似文献   

12.
Different cryogenic and a heated GC x GC modulator(s) were evaluated and compared for the analysis of high-boiling halogenated compounds. The cryogenic modulators investigated were: (i) the longitudinally modulated cryogenic system; (ii) the liquid-nitrogen-cooled jet modulator (KT2001); (iii) a dual-jet CO2 modulator (made in-house); (iv) a semi-rotating cryogenic modulator (made in-house) and (v) a CO2 loop modulator (KT2003); the heated modulator was the slotted heater system (sweeper). Each modulator was optimised with respect to analyte peak widths at half height in the second-dimension. n-Alkanes, chlorinated alkanes, polychlorinated biphenyls (PCBs) and fluorinated polycyclic aromatic hydrocarbons (F-PAHs) were used as test analytes. The flow rate of the coolant was found to be an important parameter, i.e. the flow rate of the gaseous nitrogen in the KT2001, and of the liquid CO2 in the other cryogenic modulators. For the slotted heater the stroke velocity and pause time were important parameters. This modulator had a limited application range in terms of temperature due to a necessary 100 degrees C difference between sweeper and oven temperature. All cryogenic modulators were found to be suitable for the GC x GC analysis of high-boiling compounds, but the CO2 modulators are to be preferred to the KT2001 due to a wider application range and slightly narrower peaks. As regards the performance of three commercially available electron-capture detectors (ECDs), the aim was to obtain narrow peak widths in GC x GC, i.e. to avoid band broadening caused by the cell volume. The most important parameters were the flow rate of the make-up gas and the detector temperature which both should be as high as possible. Comparison of analyte peak widths obtained with ECD mode and flame ionisation detection (FID) showed that all ECDs exhibited band broadening compared to the FID. The narrowest peaks were obtained with the Agilent micro-ECD, which has a cell volume of only 150 microl.  相似文献   

13.
The present work describes the chemical composition and evaluates the antimicrobial and the anti-acetylcholinesterase properties of the flower oil from the Tunisian Ferula lutea obtained by hydrodistillation and analyzed by combination of GC/FID and GC/MS. The chemical composition of the flower oil of this species is reported for the first time. Seventeen compounds were identified accounting for 94.3% of the total oil. The chemical composition of this essential oil was characterized by a high proportion of monoterpene hydrocarbons (80.4%) among which delta-3-carene (31.2%) and alpha-pinene (25.8%) were the predominant compounds. The oxygenated monoterpenes represent the second major fraction (12.0%), 2,3,6-trimethylbenzaldehyde (10.9%) being the predominant one. Furthermore, the isolated oil was tested for its antimicrobial activity using the disc-diffusion and the microdilution assays against six Gram-positive and five Gram-negative bacteria as well as towards eight Candida species. It was found that flower oil of F. lutea exhibited interesting antibacterial and anticandidal activity (MIC = 39 mcirog/mL against Escherichia coli, Staphylococcus aureus and S. epidermidis and MIC = 156 microg/mL against Candida albicans). The anti-acetylcholinesterase effect of this oil was also evaluated in this work. Results showed that this oil exhibits significant activity (IC50 =70.25 +/- 5.41 microg/mL).  相似文献   

14.
《Analytical letters》2012,45(15):3083-3110
ABSTRACT

A solid phase extraction (SPE) system has been modified with cationic surfactants and evaluated for extraction and preconcentration of trace phenolic compounds contaminants in water at low ppb concentrations. Cationic surfactants such as cetyl trimethyl ammonium bromide (CTAB) has been steadily adsorbed on the surface of C-18 bonded silica, and the ionized functional group of the surfactant can then act as an ion–exchange site to attract the ionized phenolic compounds from water samples. The method includes enrichment of the phenolic compounds by the surfactant-loaded solid phase extraction system, followed by elution of the analyte with methylene chloride and derivatization of the phenolic compounds with acetic anhydride. Thirty-two phenolic analytes were identified and quantitatively determined by this method; identification and quantification of the compounds is performed with GC/FID using 2-bromophenol as internal standard. SPME analysis with this method was linear over 3-6 orders of magnitude, with linear correlation coefficient (R2) greater than 0.96. Experimentally determined FID detection limits ranged from ~30 ppt for methyl-substituted phenols to ~0.1ppb for phenol and chloro-substituted phenols. We tested the influence of sample pH, the loading amount of surfactant on the solid phase, and the volume and matrixes of the sample were studied. Absolute recoveries from pure water spiked with 0.2 ppb phenolic compounds were 96 – 103%. The method has been applied to analysis of various natural waters, including ground water, lake water, seawater, and wastewater. Recoveries from ground water, lake water, seawater, and wastewater were 92 – 106%, 75 – 93%, 87 – 103%, 86 – 99%, respectively. Therefore, the new technique proved to be an excellent tool for trace enrichments of phenolic compounds at low ppb concentration of these analytes, from different natural water samples.  相似文献   

15.
Few studies were conducted on oxygenated volatile organic compounds (OVOC) because of problems encountered during the sampling/analyzing steps induced by water in sampled air. Consequently, there is a lack of knowledge of their spatial and temporal trends and their origins in ambient air. In this study, an analyzer consisted of a thermal desorber (TD) interfaced with a gas chromatograph (GC) and a flame ionization detector (FID) was developed for online measurements of 18 OVOC in ambient air including 4 alcohols, 6 aldehydes, 3 ketones, 3 ethers, 2 esters and 4 nitriles. The main difficulty was to overcome the humidity effect without loss of compounds. Water amount in the sampled air was reduced by the trap composition (two hydrophobic graphitized carbons—Carbopack B:Carbopack X), the trap temperature (held at 12.5 °C), by diluting (50:50) the sample with dry air before the preconcentration step and a trap purge with helium. Humidity management allowed the use of a polar CP-Lowox column in order to separate the polar compounds from the hydrocarbon/aromatic matrix. The safe sampling volume for the dual-sorbent trap 75 mg Carbopack X:5 mg Carbopack B was found to 405 mL for ethanol by analyzing a standard mixture at a relative humidity of 80%. Detection limits ranging from 10 ppt for ETBE to 90 ppt for ethanol were obtained for 18 compounds for a sampling volume of 405 mL. Good repeatabilities were obtained at two levels of concentration (relative standard deviation <5%). The calibration (ranging from 0.5 to 10 ppb) was set up at three different levels of relative humidity to test the humidity effect on the response coefficients. Results showed that the response coefficients of all compounds were less affected by humidity except for those of ethanol and acetonitrile (decrease respectively of 30% and 20%). The target compounds analysis shows good reproducibility with response coefficient variability of less then 10% of the mean initial value of calibration for all the compounds. Hourly ambient air measurements were conducted in an urban site in order to test this method. On the basis of these measurements, ethanol, acetone and acetaldehyde have shown the highest concentration levels with an average of 2.10, 1.75 and 1.37 ppb respectively. The daily evolution of some OVOC, namely ethanol and acetaldehyde, was attributed to emissions from motor vehicles while acetone has a different temporal evolution that can be probably associated with remote sources.  相似文献   

16.
Y Cai  G Jiang  J Liu 《The Analyst》2001,126(10):1678-1682
The adsorption characteristics of five commercially available Chromosorb GC stationary phases towards Cd2+ and their application to the preconcentration and ETAAS determination of Cd2+ in several water samples were studied. The experimental results indicated that although all of the five Chromosorb GC stationary phases studied can retain Cd2+ quantitatively from aqueous solutions at appropriate pH values without adding chelating reagent. Chromosorb 105 displayed the highest adsorption capacity. A highly sensitive, simple methodology for preconcentration and ETAAS determination of trace amounts of cadmium in natural water samples using a Chromosorb 105 packed minicolumn is proposed. Conditions for quantitative and reproducible preconcentration, elution and subsequent ETAAS determination were established. The high retention efficiency (> 95%) for Cd2+ provides a sensitivity enhancement of 100-fold for a 200 mL sample volume with a detection limit of 6.2 ng L(-1) (3 sigma).  相似文献   

17.
An on-line column preconcentration method based on the combined use of ammonium O,O-diethyldithiophosphate and activated carbon or polyurethane foam as adsorbents has been developed for the determination of Pb in water samples. The complexed Pb was eluted with ethanol and determined by flame atomic absorption spectrometry. The optimum preconcentration conditions are given for each adsorbent. The enrichment factors were 63 and 294, and the detection limits (3sigma) 3 microg L(-1) and 0.8 microg L(-1), respectively, for the carbon and foam systems. When the optimized procedures were applied to the determination of Pb in water samples the recovery efficiency was > 96%.  相似文献   

18.
Single column gas chromatography (GC) in combination with a flame ionization detector (FID) and/or a mass spectrometer is routinely employed in the determination of perfume profiles. The latter are to be considered medium to highly complex matrices and, as such, can only be partially separated even on long capillaries. Inevitably, several monodimensional peaks are the result of two or more overlapping components, often hindering reliable identification and quantitation. The present investigation is based on the use of a comprehensive GC (GC x GC) method, in vacuum outlet conditions, for the near to complete resolution of a complex perfume sample. A rapid scanning quadrupole mass spectrometry (qMS) system, employed for the assignment of GC x GC peaks, supplied high quality mass spectra. The validity of the three-dimensional (3D) GC x GC-qMS application was measured and compared to that of GC-qMS analysis on the same matrix. Peak identification, in all applications, was achieved through MS spectra library matching and the interactive use of linear retention indices (LRI).  相似文献   

19.
In this paper, we report the qualitative and quantitative composition of the volatile and the oxygenated heterocyclic fraction of citron (Citrus medica L. cv. Diamante (Diamante citron)). The fruits selected for the extraction were of three types: green citron of little size, green citron of big size, and yellow citron after 1 month from the harvest. The essential oils were extracted using three different methods. The nine samples of oil thus obtained were analyzed by high resolution GC (HRGC)‐flame ionization detection (FID), HRGC‐MS, and RP‐HPLC. They differ only in the quantitative composition, while the qualitative profile was the same. The volatile fraction of every sample of oil is characterized by a high content of limonene, γ‐terpinene, and monoterpene aldehydes and a lower content of α‐ and β‐pinene and myrcene, sesquiterpenes, and aliphatic aldehydes. Enantioselective (Es)‐GC analysis of the extracts allowed the determination of the enantiomeric distribution of five terpenoid compounds; a prevalence of four dextrorotatory isomers was observed. Oxypeucedanin was the main component of the oxygenated heterocyclic fraction in the extracts of green fruits, while citropten was the major oxygenated compound in the oil obtained from yellow citron.  相似文献   

20.
Di P  Davey DE 《Talanta》1995,42(8):1081-1088
A flow injection on-line preconcentration technique, combined with graphite furnace atomic absorption spectrometry for the determination of gold in ore samples has been presented. An alpha-amino pyridine resin (AP) was loaded onto a microcolumn as the preconcentration reagent and a solution of 90% acetone-5% HCl-5% H(2)O was used for the gold elution. The Scaled Simplex Method was employed to optimize the flow injection manifold. The selected factors were optimized by the simultaneous consideration of two responses, absorbance and column retention efficiency, with only 12 tests. A detection limit of 0.065 mug Au/l (3sigma) with a relative standard deviation of 4.3%, was achieved. Ore samples containing gold have been analysed successfully using the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号