首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 415 毫秒
1.
First, we study several information theories based on quantum computing in a desirable noiseless situation. (1) We present quantum key distribution based on Deutsch’s algorithm using an entangled state. (2) We discuss the fact that the Bernstein-Vazirani algorithm can be used for quantum communication including an error correction. Finally, we discuss the main result. We study the Bernstein-Vazirani algorithm in a noisy environment. The original algorithm determines a noiseless function. Here we consider the case that the function has an environmental noise. We introduce a noise term into the function f(x). So we have another noisy function g(x). The relation between them is g(x) = f(x) ± O(??). Here O(??) ? 1 is the noise term. The goal is to determine the noisy function g(x) with a success probability. The algorithm overcomes classical counterpart by a factor of N in a noisy environment.  相似文献   

2.
An interpretation of quantum mechanics is discussed. It is assumed that quantum is energy. An algorithm by means of the energy interpretation is discussed. An algorithm, based on the energy interpretation, for fast determining a homogeneous linear function f(x) := s.x = s 1 x 1 + s 2 x 2 + ? + s N x N is proposed. Here x = (x 1, … , x N ), x j R and the coefficients s = (s 1, … , s N ), s j N. Given the interpolation values \((f(1), f(2),...,f(N))=\vec {y}\), the unknown coefficients \(s = (s_{1}(\vec {y}),\dots , s_{N}(\vec {y}))\) of the linear function shall be determined, simultaneously. The speed of determining the values is shown to outperform the classical case by a factor of N. Our method is based on the generalized Bernstein-Vazirani algorithm to qudit systems. Next, by using M parallel quantum systems, M homogeneous linear functions are determined, simultaneously. The speed of obtaining the set of M homogeneous linear functions is shown to outperform the classical case by a factor of N × M.  相似文献   

3.
The bouncing evolution of an universe in Loop Quantum Cosmology can be described very well by a set of effective equations, involving a function sin x. Recently, we have generalised these effective equations to \((d + 1)\) dimensions and to any function f(x). Depending on f(x) in these models inspired by Loop Quantum Cosmology, a variety of cosmological evolutions are possible, singular as well as non singular. In this paper, we study them in detail. Among other things, we find that the scale factor \(a(t) \propto t^{ \frac{2 q}{(2 q - 1) (1 + w) d}}\) for \(f(x) = x^q\), and find explicit Kasner-type solutions if \(w = 2 q - 1 \) also. A result which we find particularly fascinating is that, for \(f(x) = \sqrt{x}\), the evolution is non singular and the scale factor a(t) grows exponentially at a rate set, not by a constant density, but by a quantum parameter related to the area quantum.  相似文献   

4.
It is proved that, for every rational function of two variables P(x, y) of analytic complexity one, there is either a representation of the form f(a(x) + b(y)) or a representation of the form f(a(x)b(y)), where f(x), a(x), b(x) are nonconstant rational functions of a single variable. Here, if P(x, y) is a polynomial, then f(x), a(x), and b(x) are nonconstant polynomials of a single variable.  相似文献   

5.
We study the massless field on \({D_n = D \cap \tfrac{1}{n} \mathbf{Z}^2}\), where \({D \subseteq \mathbf{R}^2}\) is a bounded domain with smooth boundary, with Hamiltonian \({\mathcal {H}(h) = \sum_{x \sim y} \mathcal {V}(h(x) - h(y))}\). The interaction \({\mathcal {V}}\) is assumed to be symmetric and uniformly convex. This is a general model for a (2 + 1)-dimensional effective interface where h represents the height. We take our boundary conditions to be a continuous perturbation of a macroscopic tilt: h(x) = n x · u + f(x) for \({x \in \partial D_n,\,u \in \mathbf{R}^2}\), and f : R 2R continuous. We prove that the fluctuations of linear functionals of h(x) about the tilt converge in the limit to a Gaussian free field on D, the standard Gaussian with respect to the weighted Dirichlet inner product \({(f,g)_\nabla^\beta = \int_D \sum_i \beta_i \partial_i f_i \partial_i g_i}\) for some explicit β = β(u). In a subsequent article, we will employ the tools developed here to resolve a conjecture of Sheffield that the zero contour lines of h are asymptotically described by SLE(4), a conformally invariant random curve.  相似文献   

6.
S Haddad 《Pramana》2017,88(5):74
We introduce an inhomogeneous term, f(t,x), into the right-hand side of the usual Burgers equation and examine the resulting equation for those functions which admit at least one Lie point symmetry. For those functions f(t,x) which depend nontrivially on both t and x, we find that there is just one symmetry. If f is a function of only x, there are three symmetries with the algebra s l(2,R). When f is a function of only t, there are five symmetries with the algebra s l(2,R) ⊕ s 2A 1. In all the cases, the Burgers equation is reduced to the equation for a linear oscillator with nonconstant coefficient.  相似文献   

7.
Let \({\mathfrak{D}}\) be the space consists of pairs (f, g), where f is a univalent function on the unit disc with f(0) = 0, g is a univalent function on the exterior of the unit disc with g(∞) = ∞ and f′(0)g′(∞) = 1. In this article, we define the time variables \({t_n, n\in \mathbb{Z}}\), on \({\mathfrak{D}}\) which are holomorphic with respect to the natural complex structure on \({\mathfrak{D}}\) and can serve as local complex coordinates for \({\mathfrak{D}}\) . We show that the evolutions of the pair (f, g) with respect to these time coordinates are governed by the dispersionless Toda hierarchy flows. An explicit tau function is constructed for the dispersionless Toda hierarchy. By restricting \({\mathfrak{D}}\) to the subspace Σ consists of pairs where \({f(w)=1/\overline{g(1/\bar{w})}}\), we obtain the integrable hierarchy of conformal mappings considered by Wiegmann and Zabrodin [31]. Since every C 1 homeomorphism γ of the unit circle corresponds uniquely to an element (f, g) of \({\mathfrak{D}}\) under the conformal welding \({\gamma=g^{-1}\circ f}\), the space Homeo C (S 1) can be naturally identified as a subspace of \({\mathfrak{D}}\) characterized by f(S 1) = g(S 1). We show that we can naturally define complexified vector fields \({\partial_n, n\in \mathbb{Z}}\) on Homeo C (S 1) so that the evolutions of (f, g) on Homeo C (S 1) with respect to ? n satisfy the dispersionless Toda hierarchy. Finally, we show that there is a similar integrable structure for the Riemann mappings (f ?1g ?1). Moreover, in the latter case, the time variables are Fourier coefficients of γ and 1/γ ?1.  相似文献   

8.
In this paper, we derived the equations for the hypersurface \({M^{n}_{r}}\) of a pseudo-Riemannian space form \(N^{n+1}_{q}(c)\) to satisfy τ 2(?) = η τ(?) (η a constant) with τ(?) and τ 2(?) be the tension and bitension fields of \({M^{n}_{r}}\). As applications, we prove that a hypersurface \({M^{n}_{r}}\) satisfying τ 2(?) = η τ(?) in \(N^{n+1}_{q}(c)\) has constant mean curvature, under the assumption that \({M^{n}_{r}}\) has diagonalizable shape operator with at most three distinct principal curvatures. Then, using this result, we classify partially such hypersurface. We also make a preliminary study of hypersurfaces satisfying τ 2(?) = f τ(?) with f be function.  相似文献   

9.
We investigate the analytic structure of solutions of non-relativistic Schrödinger equations describing Coulombic many-particle systems. We prove the following: Let ψ(x) with \({{\bf x} = (x_{1},\dots, x_{N})\in \mathbb {R}^{3N}}\) denote an N-electron wavefunction of such a system with one nucleus fixed at the origin. Then in a neighbourhood of a coalescence point, for which x 1 = 0 and the other electron coordinates do not coincide, and differ from 0, ψ can be represented locally as ψ(x) = ψ (1)(x) + |x 1|ψ (2)(x) with ψ (1), ψ (2) real analytic. A similar representation holds near two-electron coalescence points. The Kustaanheimo-Stiefel transform and analytic hypoellipticity play an essential role in the proof.  相似文献   

10.
We consider fluctuations of the solution W ε (t, x, k) of the Wigner equation which describes energy evolution of a solution of the Schrödinger equation with a random white noise in time potential. The expectation of W ε (t, x, k) converges as ε → 0 to \({\bar{W}(t,x,k)}\) which satisfies the radiative transport equation. We prove that when the initial data is singular in the x variable, that is, W ε (0, x, k) = δ(x)f(k) and \({f\in {\mathcal{S}}(\mathbb{R}^d)}\), then the laws of the rescaled fluctuation \({Z_\varepsilon(t):=\varepsilon^{-1/2}[W_\varepsilon(t,x,k)-\bar{W}(t,x,k)]}\) converge, as ε → 0+, to the solution of the same radiative transport equation but with a random initial data. This complements the result of [6], where the limit of the covariance function has been considered.  相似文献   

11.
We consider on a bounded domain \(\Omega \subset {\mathbb{R}}^N\) , the Schrödinger operator ? Δ ? V supplemented with Dirichlet boundary solutions. The potential V is either the critical inverse square potential V(x) = (N ? 2)2/4|x|?2 or the critical borderline potential V(x) =  (1/4)dist(x, ?Ω)?2. We present explicit asymptotic estimates on the eigenvalues of the critical Schrödinger operator in each case, based on recent results on improved Hardy–Sobolev type inequalities.  相似文献   

12.
We discuss the procedure of different partitions in the finite set of N integer numbers and construct generic formulas for a bijective map of real numbers s y , where y = 1, 2,…, N, N = \( \underset{k=1}{\overset{n}{\varPi}}{X}_k, \) and X k are positive integers, onto the set of numbers s(y(x 1, x 2,…, x n )). We give the functions used to present the bijective map, namely, y(x 1, x 2, …, x n ) and x k (y) in an explicit form and call them the functions detecting the hidden correlations in the system. The idea to introduce and employ the notion of “hidden gates” for a single qudit is proposed. We obtain the entropic-information inequalities for an arbitrary finite set of real numbers and consider the inequalities for arbitrary Clebsch–Gordan coefficients as an example of the found relations for real numbers.  相似文献   

13.
In the case of using the higher derivative regularization for N = 1 supersymmetric quantum electrodynamics (SQED) with N f flavors, the loop integrals giving the β-function are integrals of double total derivatives in themomentum space. This feature allows reducing one of the loop integrals to an integral of the δ-function and deriving the Novikov–Shifman–Vainshtein–Zakharov relation for the renormalization group functions defined in terms of the bare coupling constant. We consider N = 1 SQED with N f flavors regularized by the dimensional reduction in the \(\overline {DR} \)-scheme. Evaluating the scheme-dependent three-loop contribution to the β-function proportional to (N f)2 we find the structures analogous to integrals of the δ-singularities. After adding the schemeindependent terms proportional to (N f)1, we obtain the known result for the three-loop β-function.  相似文献   

14.
We present a new method of more speedily calculating a multiplication by using the generalized Bernstein-Vazirani algorithm and many parallel quantum systems. Given the set of real values \(\{a_{1},a_{2},a_{3},\ldots ,a_{N}\}\) and a function \(g:\textbf {R}\rightarrow \{0,1\}\), we shall determine the following values \(\{g(a_{1}),g(a_{2}),g(a_{3}),\ldots , g(a_{N})\}\) simultaneously. The speed of determining the values is shown to outperform the classical case by a factor of \(N\). Next, we consider it as a number in binary representation; M1 = (g(a1),g(a2),g(a3),…,g(a N )). By using \(M\) parallel quantum systems, we have \(M\) numbers in binary representation, simultaneously. The speed of obtaining the \(M\) numbers is shown to outperform the classical case by a factor of \(M\). Finally, we calculate the product; \( M_{1}\times M_{2}\times \cdots \times M_{M}. \) The speed of obtaining the product is shown to outperform the classical case by a factor of N × M.  相似文献   

15.
It is shown that the von Neumann algebra\(R_\mathfrak{B} \)(B) generated by any scalar local functionB(x) of the free fieldA 0(x) is equal either to\(R_\mathfrak{B} \)(A 0) or to\(R_\mathfrak{B} \)(:A 0 2 :). The latter statement holds if the state space space\(\mathfrak{H}_B \) obtained from the vacuum state by repeated application ofB(x) is orthogonal to the one particle subspace. In the proof of these statements, space-time limiting techniques are used.  相似文献   

16.
17.
We propose a model-independent formalism to numerically solve the modified Friedmann equations in the framework of f(T) teleparallel cosmology. Our strategy is to expand the Hubble parameter around the redshift \(z=0\) up to a given order and to adopt cosmographic bounds as initial settings to determine the corresponding \(f(z)\equiv f(T(H(z)))\) function. In this perspective, we distinguish two cases: the first expansion is up to the jerk parameter, the second expansion is up to the snap parameter. We show that inside the observed redshift domain \(z\le 1\), only the net strength of f(z) is modified passing from jerk to snap, whereas its functional behavior and shape turn out to be identical. As first step, we set the cosmographic parameters by means of the most recent observations. Afterwards, we calibrate our numerical solutions with the concordance \(\Lambda \)CDM model. In both cases, there is a good agreement with the cosmological standard model around \(z\le 1\), with severe discrepancies outer of this limit. We demonstrate that the effective dark energy term evolves following the test-function: \(f(z)={\mathcal {A}}+{\mathcal {B}}{z}^2e^{{\mathcal {C}}{z}}\). Bounds over the set \(\left\{ {\mathcal {A}}, {\mathcal {B}}, {\mathcal {C}}\right\} \) are also fixed by statistical considerations, comparing discrepancies between f(z) with data. The approach opens the possibility to get a wide class of test-functions able to frame the dynamics of f(T) without postulating any model a priori. We thus re-obtain the f(T) function through a back-scattering procedure once f(z) is known. We figure out the properties of our f(T) function at the level of background cosmology, to check the goodness of our numerical results. Finally, a comparison with previous cosmographic approaches is carried out giving results compatible with theoretical expectations.  相似文献   

18.
We study the equilibrium phase diagram of a generalized ABC model on an interval of the one-dimensional lattice: each site i=1,…,N is occupied by a particle of type α=A,B,C, with the average density of each particle species N α /N=r α fixed. These particles interact via a mean field nonreflection-symmetric pair interaction. The interaction need not be invariant under cyclic permutation of the particle species as in the standard ABC model studied earlier. We prove in some cases and conjecture in others that the scaled infinite system N→∞, i/Nx∈[0,1] has a unique density profile ρ α (x) except for some special values of the r α for which the system undergoes a second order phase transition from a uniform to a nonuniform periodic profile at a critical temperature \(T_{c}=3\sqrt{r_{A} r_{B} r_{C}}/2\pi\).  相似文献   

19.
A novel quantum image encryption and decryption algorithm based on iteration framework of frequency-spatial domain transforms is proposed. In this paper, the images are represented in the flexible representation for quantum images (FRQI). Previous quantum image encryption algorithms are realized by spatial domain transform to scramble the position information of original images and frequency domain transform to encode the color information of images. But there are some problems such as the periodicity of spatial domain transform, which will make it easy to recover the original images. Hence, we present the iterative framework of frequency-spatial domain transforms. Based on the iterative framework, the novel encryption algorithm uses Fibonacci transform and geometric transform for many times to scramble the position information of the original images and double random-phase encoding to encode the color information of the images. The encryption keys include the iterative time t of the Fibonacci transform, the iterative time l of the geometric transform, the geometric transform matrix G i which is n × n matrix, the classical binary sequences K (\(k_{0}k_{1}{\ldots } k_{2^{2n}-1}\)) and \(D(d_{0}d_{1}{\ldots } d_{2^{2n}-1}\)). Here the key space of Fibonacci transform and geometric transform are both estimated to be 226. The key space of binary sequences is (2 n×n ) × (2 n×n ). Then the key space of the entire algorithm is about \(2^{2{n^{2}}+52}\). Since all quantum operations are invertible, the quantum image decryption algorithm is the inverse of the encryption algorithm. The results of numerical simulation and analysis indicate that the proposed algorithm has high security and high sensitivity.  相似文献   

20.
We study shock statistics in the scalar conservation law ? t u+? x f(u)=0, x∈?, t>0, with a convex flux f and spatially random initial data. We show that the Markov property (in x) is preserved for a large class of random initial data (Markov processes with downward jumps and derivatives of Lévy processes with downward jumps). The kinetics of shock clustering is then described completely by an evolution equation for the generator of the Markov process u(x,t), x∈?. We present four distinct derivations for this evolution equation, and show that it takes the form of a Lax pair. The Lax equation admits a spectral parameter as in Manakov (Funct. Anal. Appl. 10:328–329, 1976), and has remarkable exact solutions for Burgers equation (f(u)=u 2/2). This suggests the kinetic equations of shock clustering are completely integrable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号