首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We propose a scheme for generating maximally entangled states for two or more two-level atoms in a thermal cavity. The cavity frequency is large-detuned from the atomic transition frequency, so the Hamiltonian can be expressed as an effective form. The photon-number-dependent parts in the effective Hamiltonian are cancelled with the assistance of a strong classical field, thus the scheme is insensitive to both the cavity decay and the thermal field. The scheme can be used to generate multi-atom Bell-state and Greenberger-Horne-Zeiliner (GHZ) state.  相似文献   

2.
A new scheme of first-principles computation for strongly correlated electron systems is proposed. This scheme starts from the local-density approximation (LDA) at high-energy band structure, while the low-energy effective Hamiltonian is constructed by a downfolding procedure using combinations of the constrained-LDA and the GW method. The obtained low-energy Hamiltonian is solved by the path-integral renormalization-group method, where spatial and dynamical fluctuations are fully considered. An application to Sr2VO4 shows that the scheme is powerful in agreement with experimental results. It further predicts a nontrivial orbital-stripe order.  相似文献   

3.
The microscopic driving mechanisms for the structural phase transition on W(001) and Mo(001) surfaces are discussed. It is argued that the coherence length is short for these systems and an effective lattice dynamic Hamiltonian is appropriate for the study of these transitions. The Migdal renormalization scheme is applied to a simple model Hamiltonian and the overall phase diagram in the temperature-anisotropy field plane is obtained.  相似文献   

4.
Basic formula for the magnetic susceptibility of systems with 4f-ions within the LS-coupling scheme is introduced. The high temperature behaviour of thermodynamic average values is considered and the result is used for a high temperature expansion of the magnetic susceptibility. The results in the whole temperature range are given for systems described by one-particle Hamiltonians and effective one-particle Hamiltonians are considered. Explicit formulas are given for the case of a crystal field Hamiltonian and Heisenberg interaction Hamiltonian including molecular field approximation.  相似文献   

5.
Ab initio determination of model Hamiltonian parameters for strongly correlated materials is a key issue in applying many-particle theoretical tools to real narrow-band materials. We propose a selfcontained calculation scheme to construct, with an ab initio approach, and solve such a Hamiltonian. The scheme uses a Wannier-function-basis set, with the Coulomb interaction parameter U obtained specifically for theseWannier functions via constrained Density functional theory (DFT) calculations. The Hamiltonian is solved by Dynamical Mean-Field Theory (DMFT) with the effective impurity problem treated by the Quantum Monte Carlo (QMC) method. Our scheme is based on the pseudopotential plane-wave method, which makes it suitable for developments addressing the challenging problem of crystal structural relaxations and transformations due to correlation effects. We have applied our scheme to the “charge transfer insulator” material nickel oxide and demonstrate a good agreement with the experimental photoemission spectra.  相似文献   

6.
姜春蕾  方卯发  郑小娟 《中国物理》2006,15(12):2953-2958
In this paper, we propose a physical scheme to concentrate non-maximally entangled atomic pure states by using atomic collision in a far-off-resonant cavity. The most distinctive advantage of our scheme is that the non-maximally entangled atoms may be far from or near each other and their degree of entanglement can be maximally amplified. The photon-number-dependent parts in the effective Hamiltonian are cancelled with the assistance of a strong classical field, thus the scheme is insensitive to both the cavity decay and the thermal field.  相似文献   

7.
We propose a simple scheme for the generation of a peculiar tripartite entangled state via thermal cavity. The peculiar tripartite entangled state shares features of the GHZ and 14/ state simultaneously. The photon-numberdependent parts in the effective Hamiltonian are canceled with the assistance of a strong classical field, thus the scheme is insensitive to both the thermal field and the cavity decay. The only thing one needs to do is to modulate the interaction time only once.  相似文献   

8.
林丽华 《中国物理 B》2009,18(9):3890-3892
This paper presents a scheme for realizing the frequency up-conversion between two collective atomic modes. In the scheme two atomic samples are coupled to a cavity mode. Under the large detuning condition, the two collective atomic modes are coupled via the virtual excitation of the cavity mode and the effective Hamiltonian corresponds to the frequency up-conversion. In the scheme the cavity mode is only virtually excited and thus the process is insensitive to cavity decay.  相似文献   

9.
A potential scheme is proposed for generating cluster states of many trapped ions in thermal motion, in which the effective Hamiltonian does not involve the external degree of freedom and thus the scheme is insensitive to the external state, allowing it to be thermal state. The required experimental techniques of the schemes are within the scope that can be obtained in the ion-trap setup.  相似文献   

10.
We present a scheme for the preparation of arbitrary non-maximally entangled states of two two-level atoms. The distinct feature of the effective Hamiltonian is that it is independent of the photon-number of the cavity field. Thus the scheme is insensitive to the cavity decay and the atom radiation.  相似文献   

11.
This work presents the possibility of applying the Floquet–Magnus expansion and the Fer expansion approaches to the most useful interactions known in solid-state nuclear magnetic resonance using the magic-echo scheme. The results of the effective Hamiltonians of these theories and average Hamiltonian theory are presented.  相似文献   

12.
We construct an effective Hamiltonian at fixed momentum which can be used to calculate higher-order corrections to quantum states of localized classical solutions of scalar field theories in 1 + 1 dimensions. We use the quantization scheme discussed first by Creutz and also by Rothe and one of the present authors (J.B.). The effective Hamiltonian is similar to, but nevertheless different from the one obtained in the collective coordinate method. The agreement of the energy corrections at the two-loop level has been checked.  相似文献   

13.
An algorithm for implementing the approximation of the leading irreducible representation of the SU(3) group is expounded for a microscopic Hamiltonian involving the potential energy of nucleon-nucleon interaction. An effective Hamiltonian is constructed that reproduces the results of calculations with nucleon-nucleon potentials used in the theory of light nuclei. It is shown that, in many respects, the structure of the effective Hamiltonian is similar to the structure of the Hamiltonian of a triaxial rotor and that, for the wave functions in the Elliott scheme, one can go over to a space where linear combinations of Wigner D functions appear to be the transforms of these functions, but where their normalization requires dedicated calculations.  相似文献   

14.
给出1+1维QCD中格点哈密顿量的一种简单有效的改进形式,并用它对矢量介子质量谱Mv在手征极限下的大Nc行为进行格点研究,数值计算的结果与强耦合分析的结果相一致.  相似文献   

15.
Since there are quantization ambiguities in constructing the Hamiltonian constraint operator in isotropic loop quantum cosmology, it is crucial to check whether the key features of loop quantum cosmology are robust against the ambiguities. In this Letter, we quantize the Lorentz term of the gravitational Hamiltonian constraint in the spatially flat FRW model by two approaches different from that of the Euclidean term. One of the approaches is very similar to the treatment of the Lorentz part of Hamiltonian in loop quantum gravity and hence inherits more features from the full theory. Two symmetric Hamiltonian constraint operators are constructed respectively in the improved scheme. Both of them are shown to have the correct classical limit by the semiclassical analysis. In the loop quantum cosmological model with a massless scalar field, the effective Hamiltonians and Friedmann equations are derived. It turns out that the classical big bang is again replaced by a quantum bounce in both cases. Moreover, there are still great possibilities for the expanding universe to recollapse due to the quantum gravity effect.  相似文献   

16.
A mixed matrix-operator form of the effective rotational Hamiltonian has been discussed for the degenerate vibrational states of symmetric top molecules. In this scheme, a rotational contact transformation can be applied to the effective Hamiltonian such that the operators of the “2, +2,” “2, −2,” and “2, −1” l-type interactions as well as the operators of the Δk = ±3 and ±4 interactions are eliminated from the first-order terms of the expansion of the rotational Hamiltonian in terms of the small parameter λ. The results have been used to discuss the correlation between various interaction parameters in the effective rotational Hamiltonian for the doubly degenerate fundamental vibrational levels of semirigid symmetric top molecules. For example, for C3v or D3 molecules, the parameter of the “2, −1” interaction is correlated with other parameters and cannot be determined separately by fitting the experimental data (unless there are certain accidental resonances between vibrational-rotational levels).  相似文献   

17.
余华平  王双虎 《计算物理》2005,22(3):206-216
考虑哈密尔顿系统的保结构算法,在经典哈密尔顿系统的jet辛算法的基础上,给出了一般哈密尔顿系统的jet辛差分格式的定义.并利用带有变系数辛矩阵的一般哈密尔顿系统中的构造辛差分格式的生成函数法的思想,来建立由一般的反对称矩阵所确定的微分二形式与生成函数的关系,再利用哈密尔顿-雅可比方程来构造jet辛的差分格式.  相似文献   

18.
Combining adiabatic passage and Rydberg antiblockade, we propose a scheme to implement a two-qubit phase gate between two Rydberg atoms. Detuning parameters between frequencies of atomic transitions and those of the corresponding driving lasers are carefully chosen to offset the blockade effect of two Rydberg atoms, so that an effective Hamiltonian,representing a single-photon detuning L-type three-level system and concluding the quantum state of two Rydberg atoms excited simultaneously, is obtained. The adiabatic-passage technique, based on the effective Hamiltonian, is adopted to implement a two-atom phase gate by using two time-dependent Rabi frequencies. Numerical simulations indicate that a high-fidelity two-qubit p-phase gate is constructed and its operation time does not have to be controlled accurately. Besides,owing to the long coherence time of the Rydberg state, the phase gate is robust against atomic spontaneous emission.  相似文献   

19.
A difference Hamiltonian operator with three arbitrary constants is presented. When the arbitrary constants in the Hamiltonian operator are suitably chosen, a pair of Hamiltonian operators are given. The resulting Hamiltonian pair yields a difference hereditary operator. Using Magri scheme of bi-Hamiltonian formulations a hierarchy of the generalized Toda lattice equations is constructed. Finally, the discrete zero curvature representation is given for the resulting hierarchy.  相似文献   

20.
We use a Gaussian wave functional for the ground state to reorder the Hamiltonian into a free part with a variationally determined mass and the rest. Once spontaneous symmetry breaking is taken into account, the residual Hamiltonian can, in principle, be treated perturbatively. In this scheme we analyze the O(1) and O(2) scalar models. For the O(2)-theory we first explicitly calculate the massless Goldstone excitation and then show that the one-loop corrections of the effective Hamiltonian do not generate a mass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号