首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
International Journal of Theoretical Physics - Liu et al. [Quantum Inf. Process. 12, 1797–1805 (2013)] proposed a multi-party quantum key agreement (QKA) protocol based on single particles....  相似文献   

2.
International Journal of Theoretical Physics - Security, efficiency and universality are the major concerns in distributed computation for how to communicate securely as there are a large number of...  相似文献   

3.

We propose a high-efficiency three-party quantum key agreement protocol, by utilizing two-photon polarization-entangled Bell states and a few single-photon polarization states as the information carriers, and we use the quantum dense coding method to improve its efficiency. In this protocol, each participant performs one of four unitary operations to encode their sub-secret key on the passing photons which contain two parts, the first quantum qubits of Bell states and a small number of single-photon states. At the end of this protocol, based on very little information announced by other, all participants involved can deduce the same final shared key simultaneously. We analyze the security and the efficiency of this protocol, showing that it has a high efficiency and can resist both outside attacks and inside attacks. As a consequence, our protocol is a secure and efficient three-party quantum key agreement protocol.

  相似文献   

4.
International Journal of Theoretical Physics - Ma et al. [Int. J. Theor. Phys. (2021): 1328–1338] proposed a multi-party quantum key distribution (MQKD) protocol using Bell states, in which...  相似文献   

5.

The most typical case of applying technology and communication technology to life may be the popular smart home series. Users can remotely control smart devices through mobile phones, which is convenient and fast, greatly changing people’s way of life. However, the safe login of smart devices has become a thorny problem. With the emergence of quantum computer, the common encryption method cannot prevent quantum attacks. In addition, a family often has multiple smart devices and multiple family members. Each user can log in to multiple smart devices, and each device can also be logged in by multiple users. Therefore, in view of the above situation, we propose a multi-party quantum session key agreement protocol based on Bell states and single particles, which can be used for multiple participants to negotiate session keys together, and improve the efficiency of users logging in and using smart devices. Moreover, our protocol ensures that each party has an equal opportunity to decide the final shared key, no party can determine the final key individually. Furthermore, security and efficiency analysis show that our protocol can achieve ideal results under the existing quantum technology.

  相似文献   

6.
A protocol for the quantum secure multi-party summation based on two-particle Bell states is proposed. In this protocol, two-particle Bell states are used as private information carriers. Without using the entangled character of Bell states, we also use Pauli matrices operations to encode information and Hadamard matrix to extract information. The proposed protocol can also resist various attacks and overcomes the problem of information leakage with acceptable efficiency. In theory, our protocol can be used to build complex secure protocols for other multiparty computations and also lots of other important applications in distributed networks.  相似文献   

7.
Recently, Liu et al. proposed a two-party quantum private comparison (QPC) protocol using entanglement swapping of Bell entangled state (Commun. Theor. Phys. 57 (2012) 583). Subsequently, Liu et al. pointed out that in Liu et al.'s protocol, the TP can extract the two users' secret inputs without being detected by launching the Bell-basis measurement attack, and suggested the corresponding improvement to mend this loophole (Commun. Theor. Phys. 62 (2014) 210). In this paper, we first point out the information leakage problem toward TP existing in both of the above two protocols, and then suggest the corresponding improvement by using the one-way hash function to encrypt the two users' secret inputs. We further put forward the three-party QPC protocol also based on entanglement swapping of Bell entangled state, and then validate its output correctness and its security in detail. Finally, we generalize the three-party QPC protocol into the multi-party case, which can accomplish arbitrary pair's comparison of equality among K users within one execution.  相似文献   

8.

Utilizing the advantage of quantum entanglement swapping, a multi-party quantum key agreement protocol with authentication is proposed. In this protocol, a semi-trusted third party is introduced, who prepares Bell states, and sends one particle to multiple participants respectively. After that the participants can share a Greenberger-Horne-Zeilinger state by entanglement swapping. Finally, these participants measure the particles in their hands and obtain an agreement key. Here, classical hash function and Hadamard operation are utilized to authenticate the identity of participants. The correlations of GHZ states ensure the security of the proposed protocol. To illustrated it detailly, the security of this protocol against common attacks is analyzed, which shows that the proposed protocol is secure in theory.

  相似文献   

9.
Since the first quantum key agreement protocol based on Bell state was presented by Zhou et al., much attention has focused on it, which is based on entangled states and product states. In this paper, we propose a multi-party quantum key agreement protocol, in which the genuinely maximally entangled six-qubit states are used. The presented protocol allows participants to share a secret key and preserves the following advantages. First, the outcome of the protocol is influenced by all parties; Second, the presented protocol is fairness, i.e., no one can determine the shared key alone; Third, outside eavesdroppers cannot gain the generated key without introducing any error. The security analysis shows that our protocol can resist both outside attacks and inside attacks.  相似文献   

10.
International Journal of Theoretical Physics - Secure and fair multiparty quantum key agreement protocols demand all participants influence and negotiate the shared secret key with equal right and...  相似文献   

11.
The difficulty of quantum key agreement is to realize its security and fairness at the same time.This paper presents a new three-party quantum key agreement protocol based on continuous variable single-mode squeezed state.The three parties participating in the agreement are peer entities,making same contributions to the final key.Any one or two participants of the agreement cannot determine the shared key separately.The security analysis shows that the proposed protocol can resist both external and internal attacks.  相似文献   

12.
This article proposes an innovative quantum private comparison (QPC) protocol for n users using GHZ states, where an almost-dishonest third party (TP) is introduced to assist the participants for comparing their secrets. It is argued that as compared to the existing QPC protocols our proposed scheme has some considerable advantages. First, in the existing QPC protocols, the TP can only to determine whether all participants’ secrets are equal or not. Instead of that, in our proposed scheme a TP can even compare the secrets between any subsects of users. Second, since our proposed scheme is based on GHZ state; hence it can ensure higher efficiency as compared to other existing multi-party QPC protocols on d-dimension photons.  相似文献   

13.
14.
In this paper,a quantum private comparison protocol is proposed based on bell entangled states.In our protocol,two parties can compare the equality of their information with the help of a semi-honest third party.The correctness and security of our protocol are discussed.One party cannot learn the other's private information and the third party also cannot learn any information about the private information.  相似文献   

15.
International Journal of Theoretical Physics - In this paper, a multi-party quantum private comparison (MQPC) scheme is suggested based on entanglement swapping of Bell entangled states within...  相似文献   

16.
International Journal of Theoretical Physics - In this paper, we present a quantum key agreement (QKA) protocol with non-maximally entangled four-qubit cluster states. In our scheme, each...  相似文献   

17.
International Journal of Theoretical Physics - In this paper, inspired by Wang et al.’s deterministic secure quantum communication (DSQC) scheme (Commun. Theor. Phys. 60 (2013)...  相似文献   

18.
Two quantum key agreement protocols using Bell states and Bell measurement were recently proposed by Shukla et al. (Quantum Inf. Process. 13(11), 2391–2405, 2014). However, Zhu et al. pointed out that there are some security flaws and proposed an improved version (Quantum Inf. Process. 14(11), 4245–4254, 2015). In this study, we will show Zhu et al.’s improvement still exists some security problems, and its efficiency is not high enough. For solving these problems, we utilize four Pauli operations {I, Z, X, Y} to encode two bits instead of the original two operations {I, X} to encode one bit, and then propose an efficient and secure arbitrary N-party quantum key agreement protocol. In the protocol, the channel checking with decoy single photons is introduced to avoid the eavesdropper’s flip attack, and a post-measurement mechanism is used to prevent against the collusion attack. The security analysis shows the present protocol can guarantee the correctness, security, privacy and fairness of quantum key agreement.  相似文献   

19.
By utilizing Bell states and GHZ states, two quantum deterministic key distribution (QDKD) protocols are presented to hand over the previously deterministic key to the intended receiver. The proposed QDKD protocols have two-way authentications, and then the eavesdropping and impersonation can be detected easily. The deterministic key itself is not transmitted over the channel and the receiver Bob infers his key in an indirect manner with the relationship between Alice’s messages and his own measurement results, which guarantees the security of the deterministic key. Different from the quantum key distribution protocols yielding random keys, the proposed QDKD protocols can distribute the pre-deterministic keys securely, which are of great significance in the filed of key management.  相似文献   

20.
Recently, Liu et al. [Commun. Theor. Phys. 57(2012) 583] proposed a quantum private comparison protocol based on entanglement swapping of Bell states, which aims to securely compare the equality of two participants' information with the help of a semi-honest third party(TP). However, the present study points out there is a fatal loophole in Liu et al.'s protocol, and TP can make Bell-basis measurement to know all the participants' secret inputs without being detected. To fix the problem, a simple solution, which uses one-time eavesdropper checking with decoy photons instead of twice eavesdropper checking with Bell states, is demonstrated. Compared with the original protocol,it not only reduces the Bell states consumption but also simplifies the protocol steps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号