首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate several properties of a translocating homopolymer through a thin pore driven by an external field present inside the pore only using Langevin Dynamics (LD) simulations in three dimensions (3D). Motivated by several recent theoretical and numerical studies that are apparently at odds with each other, we estimate the exponents describing the scaling with chain length (Nof the average translocation time \(\ensuremath \langle\tau\rangle\) , the average velocity of the center of mass \(\ensuremath \langle v_{{\rm CM}}\rangle\) , and the effective radius of gyration \(\ensuremath \langle {R}_g\rangle\) during the translocation process defined as \(\ensuremath \langle\tau\rangle \sim N^{\alpha}\) , \(\ensuremath \langle v_{{\rm CM}} \rangle \sim N^{-\delta}\) , and \(\ensuremath {R}_g \sim N^{\bar{\nu}}\) respectively, and the exponent of the translocation coordinate (s -coordinate) as a function of the translocation time \(\ensuremath \langle s^2(t)\rangle\sim t^{\beta}\) . We find \(\ensuremath \alpha=1.36 \pm 0.01\) , \(\ensuremath \beta=1.60 \pm 0.01\) for \(\ensuremath \langle s^2(t)\rangle\sim \tau^{\beta}\) and \(\ensuremath \bar{\beta}=1.44 \pm 0.02\) for \(\ensuremath \langle\Delta s^2(t)\rangle\sim\tau^{\bar{\beta}}\) , \(\ensuremath \delta=0.81 \pm 0.04\) , and \(\ensuremath \bar{\nu}\simeq\nu=0.59 \pm 0.01\) , where \( \nu\) is the equilibrium Flory exponent in 3D. Therefore, we find that \(\ensuremath \langle\tau\rangle\sim N^{1.36}\) is consistent with the estimate of \(\ensuremath \langle\tau\rangle\sim\langle R_g \rangle/\langle v_{{\rm CM}} \rangle\) . However, as observed previously in Monte Carlo (MC) calculations by Kantor and Kardar (Y. Kantor, M. Kardar, Phys. Rev. E 69, 021806 (2004)) we also find the exponent α = 1.36 ± 0.01 < 1 + ν. Further, we find that the parallel and perpendicular components of the gyration radii, where one considers the “cis” and “trans” parts of the chain separately, exhibit distinct out-of-equilibrium effects. We also discuss the dependence of the effective exponents on the pore geometry for the range of N studied here.  相似文献   

2.
3.
Calibrations are given to extract orientation order parameters from pseudo-powder electron paramagnetic resonance line shapes of 14N-nitroxide spin labels undergoing slow rotational diffusion. The nitroxide z-axis is assumed parallel to the long molecular axis. Stochastic-Liouville simulations of slow-motion 9.4-GHz spectra for molecular ordering with a Maier–Saupe orientation potential reveal a linear dependence of the splittings, \(2A_{\hbox{max} }\) and \(2A_{\hbox{min} }\), of the outer and inner peaks on order parameter \(S_{zz}\) that depends on the diffusion coefficient \(D_{{{\text{R}} \bot }}\) which characterizes fluctuations of the long molecular axis. This results in empirical expressions for order parameter and isotropic hyperfine coupling: \(S_{zz} = s_{1} \times \left( {A_{\hbox{max} } - A_{\hbox{min} } } \right) - s_{o}\) and \(a_{o}^{{}} = \tfrac{1}{3}\left( {f_{\hbox{max} } A_{\hbox{max} } + f_{\hbox{min} } A_{\hbox{min} } } \right) + \delta a_{o}\), respectively. Values of the calibration constants \(s_{1}\), \(s_{\text{o}}\), \(f_{\hbox{max} }\), \(f_{\hbox{min} }\) and \(\delta a_{o}\) are given for different values of \(D_{{{\text{R}} \bot }}\) in fast and slow motional regimes. The calibrations are relatively insensitive to anisotropy of rotational diffusion \((D_{{{\text{R}}//}} \ge D_{{{\text{R}} \bot }} )\), and corrections are less significant for the isotropic hyperfine coupling than for the order parameter.  相似文献   

4.
The \(B\rightarrow D\) transition form factor (TFF) \(f^{B\rightarrow D}_+(q^2)\) is determined mainly by the D-meson leading-twist distribution amplitude (DA) , \(\phi _{2;D}\), if the proper chiral current correlation function is adopted within the light-cone QCD sum rules. It is therefore significant to make a comprehensive study of DA \(\phi _{2;D}\) and its impact on \(f^{B\rightarrow D}_+(q^2)\). In this paper, we calculate the moments of \(\phi _{2;D}\) with the QCD sum rules under the framework of the background field theory. New sum rules for the leading-twist DA moments \(\left\langle \xi ^n\right\rangle _D\) up to fourth order and up to dimension-six condensates are presented. At the scale \(\mu = 2 \,\mathrm{GeV}\), the values of the first four moments are: \(\left\langle \xi ^1\right\rangle _D = -0.418^{+0.021}_{-0.022}\), \(\left\langle \xi ^2\right\rangle _D = 0.289^{+0.023}_{-0.022}\), \(\left\langle \xi ^3\right\rangle _D = -0.178 \pm 0.010\) and \(\left\langle \xi ^4\right\rangle _D = 0.142^{+0.013}_{-0.012}\). Basing on the values of \(\left\langle \xi ^n\right\rangle _D(n=1,2,3,4)\), a better model of \(\phi _{2;D}\) is constructed. Applying this model for the TFF \(f^{B\rightarrow D}_+(q^2)\) under the light cone sum rules, we obtain \(f^{B\rightarrow D}_+(0) = 0.673^{+0.038}_{-0.041}\) and \(f^{B\rightarrow D}_+(q^2_{\mathrm{max}}) = 1.117^{+0.051}_{-0.054}\). The uncertainty of \(f^{B\rightarrow D}_+(q^2)\) from \(\phi _{2;D}\) is estimated and we find its impact should be taken into account, especially in low and central energy region. The branching ratio \(\mathcal {B}(B\rightarrow Dl\bar{\nu }_l)\) is calculated, which is consistent with experimental data.  相似文献   

5.
We present natural families of coordinate algebras on noncommutative products of Euclidean spaces \({\mathbb {R}}^{N_1} \times _{\mathcal {R}} {\mathbb {R}}^{N_2}\). These coordinate algebras are quadratic ones associated with an \(\mathcal {R}\)-matrix which is involutive and satisfies the Yang–Baxter equations. As a consequence, they enjoy a list of nice properties, being regular of finite global dimension. Notably, we have eight-dimensional noncommutative euclidean spaces \({\mathbb {R}}^{4} \times _{\mathcal {R}} {\mathbb {R}}^{4}\). Among these, particularly well behaved ones have deformation parameter \(\mathbf{u} \in {\mathbb {S}}^2\). Quotients include seven spheres \({\mathbb {S}}^{7}_\mathbf{u}\) as well as noncommutative quaternionic tori \({\mathbb {T}}^{{\mathbb {H}}}_\mathbf{u} = {\mathbb {S}}^3 \times _\mathbf{u} {\mathbb {S}}^3\). There is invariance for an action of \({{\mathrm{SU}}}(2) \times {{\mathrm{SU}}}(2)\) on the torus \({\mathbb {T}}^{{\mathbb {H}}}_\mathbf{u}\) in parallel with the action of \(\mathrm{U}(1) \times \mathrm{U}(1)\) on a ‘complex’ noncommutative torus \({\mathbb {T}}^2_\theta \) which allows one to construct quaternionic toric noncommutative manifolds. Additional classes of solutions are disjoint from the classical case.  相似文献   

6.
Page’s Einstein metric on \({{\mathbb{CP}}_2\#\overline{\mathbb{CP}}_2}\) is conformally related to an extremal Kähler metric. Here we construct a family of conformally Kähler solutions of the Einstein–Maxwell equations that deforms the Page metric, while sweeping out the entire Kähler cone of \({{\mathbb{CP}}_2\#\overline{\mathbb{CP}}_2}\). The same method also yields analogous solutions on every Hirzebruch surface. This allows us to display infinitely many geometrically distinct families of solutions of the Einstein–Maxwell equations on the smooth 4-manifolds \({S^2 \times S^2}\) and \({{\mathbb{CP}}_2\#\overline{\mathbb{CP}}_2}\).  相似文献   

7.
The charge exchange reaction \(\bar {\mathrm {p}} + \text {Ps} \rightarrow \mathrm {e}^{-} + \bar {\mathrm {H}} \), of interest for the future experiments (GBAR, AEGIS, ATRAP, ...) aiming to produce antihydrogen atoms, is investigated in the energy range between the \(\mathrm {e}^{-}+\bar {\mathrm {H}}(n = 2)\) and \(\mathrm {e}^{-}+\bar {\mathrm {H}}(n = 3)\) thresholds. An ab-initio method based on the solution of the Faddeev-Merkuriev equations is used. Special focus is put on the impact of the Feshbach resonances and the Gailitis-Damburg oscillations, appearing in the vicinity of the \(\bar {\mathrm {p}} +\text {Ps}(n = 2)\) threshold, on the \(\bar {\mathrm {H}}\) production cross section.  相似文献   

8.
Let \(z\in \mathbb {C}\), let \(\sigma ^2>0\) be a variance, and for \(N\in \mathbb {N}\) define the integrals
$$\begin{aligned} E_N^{}(z;\sigma ) := \left\{ \begin{array}{ll} {\frac{1}{\sigma }} \!\!\!\displaystyle \int _{\mathbb {R}}\! (x^2+z^2) \frac{e^{-\frac{1}{2\sigma ^2} x^2}}{\sqrt{2\pi }}dx&{}\quad \text{ if }\, N=1,\\ {\frac{1}{\sigma }} \!\!\!\displaystyle \int _{\mathbb {R}^N}\! \prod \prod \limits _{1\le k<l\le N}\!\! e^{-\frac{1}{2N}(1-\sigma ^{-2}) (x_k-x_l)^2} \prod _{1\le n\le N}\!\!\!\!(x_n^2+z^2) \frac{e^{-\frac{1}{2\sigma ^2} x_n^2}}{\sqrt{2\pi }}dx_n &{}\quad \text{ if }\, N>1. \end{array}\right. \!\!\! \end{aligned}$$
These are expected values of the polynomials \(P_N^{}(z)=\prod _{1\le n\le N}(X_n^2+z^2)\) whose 2N zeros \(\{\pm i X_k\}^{}_{k=1,\ldots ,N}\) are generated by N identically distributed multi-variate mean-zero normal random variables \(\{X_k\}^{N}_{k=1}\) with co-variance \(\mathrm{{Cov}}_N^{}(X_k,X_l)=(1+\frac{\sigma ^2-1}{N})\delta _{k,l}+\frac{\sigma ^2-1}{N}(1-\delta _{k,l})\). The \(E_N^{}(z;\sigma )\) are polynomials in \(z^2\), explicitly computable for arbitrary N, yet a list of the first three \(E_N^{}(z;\sigma )\) shows that the expressions become unwieldy already for moderate N—unless \(\sigma = 1\), in which case \(E_N^{}(z;1) = (1+z^2)^N\) for all \(z\in \mathbb {C}\) and \(N\in \mathbb {N}\). (Incidentally, commonly available computer algebra evaluates the integrals \(E_N^{}(z;\sigma )\) only for N up to a dozen, due to memory constraints). Asymptotic evaluations are needed for the large-N regime. For general complex z these have traditionally been limited to analytic expansion techniques; several rigorous results are proved for complex z near 0. Yet if \(z\in \mathbb {R}\) one can also compute this “infinite-degree” limit with the help of the familiar relative entropy principle for probability measures; a rigorous proof of this fact is supplied. Computer algebra-generated evidence is presented in support of a conjecture that a generalization of the relative entropy principle to signed or complex measures governs the \(N\rightarrow \infty \) asymptotics of the regime \(iz\in \mathbb {R}\). Potential generalizations, in particular to point vortex ensembles and the prescribed Gauss curvature problem, and to random matrix ensembles, are emphasized.
  相似文献   

9.
We propose a model of dark energy consists of a single scalar field with a general non-minimal kinetic couplings to itself and to the curvature. We study the cosmological dynamics of the equation of state in this setup. The coupling terms have the form \({\xi_{1} Rf(\phi)\partial_{\mu}\phi\partial^{\mu}\phi}\) and \({\xi_{2}R_{\mu\nu}f(\phi)\partial^{\mu}\phi\partial^{\nu}\phi}\) where ξ 1 and ξ 2 are coupling parameters and their dimensions depend on the type of function \({f(\phi)}\). We obtain the conditions required for phantom divide crossing and show numerically that a cosmological model with general non-minimal derivative coupling to the scalar and Ricci curvatures can realize such a crossing.  相似文献   

10.
Using the variational method and supersymmetric quantum mechanics we calculated, in an approximate way, the eigenvalues, eigenfunctions and wave functions at the origin of the Cornell potential. We compared results with numerical solutions for heavy quarkonia \(c\bar {c}\), \(b\bar {b}\) and \(b\bar {c}\).  相似文献   

11.
We perform a likelihood analysis of the minimal anomaly-mediated supersymmetry-breaking (mAMSB) model using constraints from cosmology and accelerator experiments. We find that either a wino-like or a Higgsino-like neutralino LSP, \(\tilde{\chi }^0_{1}\), may provide the cold dark matter (DM), both with similar likelihoods. The upper limit on the DM density from Planck and other experiments enforces \(m_{\tilde{\chi }^0_{1}} \lesssim 3 \,\, \mathrm {TeV}\) after the inclusion of Sommerfeld enhancement in its annihilations. If most of the cold DM density is provided by the \(\tilde{\chi }^0_{1}\), the measured value of the Higgs mass favours a limited range of \(\tan \beta \sim 5\) (and also for \(\tan \beta \sim 45\) if \(\mu > 0\)) but the scalar mass \(m_0\) is poorly constrained. In the wino-LSP case, \(m_{3/2}\) is constrained to about \(900\,\, \mathrm {TeV}\) and \(m_{\tilde{\chi }^0_{1}}\) to \(2.9\pm 0.1\,\, \mathrm {TeV}\), whereas in the Higgsino-LSP case \(m_{3/2}\) has just a lower limit \(\gtrsim 650\,\, \mathrm {TeV}\) (\(\gtrsim 480\,\, \mathrm {TeV}\)) and \(m_{\tilde{\chi }^0_{1}}\) is constrained to \(1.12 ~(1.13) \pm 0.02\,\, \mathrm {TeV}\) in the \(\mu >0\) (\(\mu <0\)) scenario. In neither case can the anomalous magnetic moment of the muon, \((g-2)_\mu \), be improved significantly relative to its Standard Model (SM) value, nor do flavour measurements constrain the model significantly, and there are poor prospects for discovering supersymmetric particles at the LHC, though there are some prospects for direct DM detection. On the other hand, if the \(\tilde{\chi }^0_{1}\) contributes only a fraction of the cold DM density, future LHC Open image in new window -based searches for gluinos, squarks and heavier chargino and neutralino states as well as disappearing track searches in the wino-like LSP region will be relevant, and interference effects enable \(\mathrm{BR}(B_{s, d} \rightarrow \mu ^+\mu ^-)\) to agree with the data better than in the SM in the case of wino-like DM with \(\mu > 0\).  相似文献   

12.
We investigate the possibility of explaining the enhancement in semileptonic decays of \({\bar{B}} \rightarrow D^{(*)} \tau {\bar{\nu }}\), the anomalies induced by \(b\rightarrow s\mu ^+\mu ^-\) in \({\bar{B}}\rightarrow (K, K^*, \phi )\mu ^+\mu ^-\) and violation of lepton universality in \(R_K = \mathrm{Br}({\bar{B}}\rightarrow K \mu ^+\mu ^-)/\mathrm{Br}({\bar{B}}\rightarrow K e^+e^-)\) within the framework of R-parity violating MSSM. The exchange of down type right-handed squark coupled to quarks and leptons yields interactions which are similar to leptoquark induced interactions that have been proposed to explain the \({\bar{B}} \rightarrow D^{(*)} \tau {\bar{\nu }}\) by tree level interactions and \(b\rightarrow s \mu ^+\mu ^-\) anomalies by loop induced interactions, simultaneously. However, the Yukawa couplings in such theories have severe constraints from other rare processes in B and D decays. Although this interaction can provide a viable solution to the \(R(D^{(*)})\) anomaly, we show that with the severe constraint from \({\bar{B}} \rightarrow K \nu {\bar{\nu }}\), it is impossible to solve the anomalies in the \(b\rightarrow s \mu ^+\mu ^-\) process simultaneously.  相似文献   

13.
Shu Yang 《Pramana》2018,90(3):36
Valence universal multireference coupled cluster (VUMRCC) method via eigenvalue independent partitioning has been applied to estimate the effect of three-body transformed Hamiltonian (\(\widetilde{{H}}_3\)) on ionisation potentials through full connected triple excitations \(S_{3}^{(1,0) }\). \(\widetilde{H}_3 \) is constructed using CCSDT1-A model of Bartlett et al for the ground-state calculation. Contribution of transformed Hamiltonian through full connected triples \(\overline{\widetilde{H}_3 S_3^{\left( {1,0} \right) }}\) involves huge amount of computational operations that is time-consuming. Investigation on \(\hbox {Cl}_{2}\) and \(\hbox {F}_{2}\) molecules using cc-pVDZ and cc-pVTZ basis sets shows that the above effect varies from 0.001 eV to around 0.5 eV, suggesting that inclusion of \(\overline{\widetilde{H} _3 S_3^{\left( {1,0} \right) } }\) is essential for highly accurate calculations.  相似文献   

14.
We investigate the decays of \(\bar{B}^0_s\), \(\bar{B}^0\) and \(B^-\) into \(\eta _c\) plus a scalar or vector meson in a theoretical framework by taking into account the dominant process for the weak decay of \(\bar{B}\) meson into \(\eta _c\) and a \(q\bar{q}\) pair. After hadronization of this \(q\bar{q}\) component into pairs of pseudoscalar mesons we obtain certain weights for the pseudoscalar meson-pseudoscalar meson components. In addition, the \(\bar{B}^0\) and \(\bar{B}^0_s\) decays into \(\eta _c\) and \(\rho ^0\), \(K^*\) are evaluated and compared to the \(\eta _c\) and \(\phi \) production. The calculation is based on the postulation that the scalar mesons \(f_0(500)\), \(f_0(980)\) and \(a_0(980)\) are dynamically generated states from the pseudoscalar meson-pseudoscalar meson interactions in S-wave. Up to a global normalization factor, the \(\pi \pi \), \(K \bar{K}\) and \(\pi \eta \) invariant mass distributions for the decays of \(\bar{B}^0_s \rightarrow \eta _c \pi ^+ \pi ^-\), \(\bar{B}^0_s \rightarrow \eta _c K^+ K^-\), \(\bar{B}^0 \rightarrow \eta _c \pi ^+ \pi ^-\), \(\bar{B}^0 \rightarrow \eta _c K^+ K^-\), \(\bar{B}^0 \rightarrow \eta _c \pi ^0 \eta \), \(B^- \rightarrow \eta _c K^0 K^-\) and \(B^- \rightarrow \eta _c \pi ^- \eta \) are predicted. Comparison is made with the limited experimental information available and other theoretical calcualtions. Further comparison of these results with coming LHCb measurements will be very valuable to make progress in our understanding of the nature of the low lying scalar mesons, \(f_0(500), f_0(980)\) and \(a_0(980)\).  相似文献   

15.
We study the pair production of scalar quark in a muon collider within the MSSM with CP violation. We show that including the CP phases can strongly affect the cross section of the process: \(\mu^{+}\mu^{-}\rightarrow \tilde{q}_{i}\bar{\tilde{q}}_{j}\). This could have an important impact on the search for squarks and the determination of the MSSM parameters at future colliders.  相似文献   

16.
For a Hopf algebra B, we endow the Heisenberg double \({\mathcal{H}(B^*)}\) with the structure of a module algebra over the Drinfeld double \({\mathcal{D}(B)}\). Based on this property, we propose that \({\mathcal{H}(B^*)}\) is to be the counterpart of the algebra of fields on the quantum-group side of the Kazhdan–Lusztig duality between logarithmic conformal field theories and quantum groups. As an example, we work out the case where B is the Taft Hopf algebra related to the \({\overline{\mathcal{U}}_{\mathfrak{q}} s\ell(2)}\) quantum group that is Kazhdan–Lusztig-dual to (p,1) logarithmic conformal models. The corresponding pair \({(\mathcal{D}(B),\mathcal{H}(B^*))}\) is “truncated” to \({(\overline{\mathcal{U}}_{\mathfrak{q}} s\ell2,\overline{\mathcal{H}}_{\mathfrak{q}} s\ell(2))}\), where \({\overline{\mathcal{H}}_{\mathfrak{q}} s\ell(2)}\) is a \({\overline{\mathcal{U}}_{\mathfrak{q}} s\ell(2)}\) module algebra that turns out to have the form \({\overline{\mathcal{H}}_{\mathfrak{q}} s\ell(2)=\mathbb{C}_{\mathfrak{q}}[z,\partial]\otimes\mathbb{C}[\lambda]/(\lambda^{2p}-1)}\), where \({\mathbb{C}_{\mathfrak{q}}[z,\partial]}\) is the \({\overline{\mathcal{U}}_{\mathfrak{q}} s\ell(2)}\)-module algebra with the relations z p  = 0, ? p  = 0, and \({\partial z = \mathfrak{q}-\mathfrak{q}^{-1} + \mathfrak{q}^{-2} z\partial}\).  相似文献   

17.
In models with colored particle \(\mathcal {Q}\) that can decay into a dark matter candidate X, the relevant collider process \(pp\rightarrow \mathcal {Q}\bar{\mathcal {Q}}\rightarrow X\bar{X}\,+\,\)jets gives rise to events with significant transverse momentum imbalance. When the masses of \(\mathcal {Q}\) and X are very close, the relevant signature becomes monojet-like, and Large Hadron Collider (LHC) search limits become much less constraining. In this paper, we study the current and anticipated experimental sensitivity to such particles at the High-Luminosity LHC at \(\sqrt{s}=14\) TeV with \(\mathcal {L}=3\) ab\(^{-1}\) of data and the proposed High-Energy LHC at \(\sqrt{s}=27\) TeV with \(\mathcal {L}=15\) ab\(^{-1}\) of data. We estimate the reach for various Lorentz and QCD color representations of \(\mathcal {Q}\). Identifying the nature of \(\mathcal {Q}\) is very important to understanding the physics behind the monojet signature. Therefore, we also study the dependence of the observables built from the \(pp\rightarrow \mathcal {Q}\bar{\mathcal {Q}} + j \) process on \(\mathcal {Q}\) itself. Using the state-of-the-art Monte Carlo suites MadGraph5_aMC@NLO+Pythia8 and Sherpa, we find that when these observables are calculated at NLO in QCD with parton shower matching and multijet merging, the residual theoretical uncertainties are comparable to differences observed when varying the quantum numbers of \(\mathcal {Q}\) itself. We find, however, that the precision achievable with NNLO calculations, where available, can resolve this dilemma.  相似文献   

18.
We present the first attempt to extract \(|V_{cb}|\) from the \(\Lambda _b\rightarrow \Lambda _c^+\ell \bar{\nu }_\ell \) decay without relying on \(|V_{ub}|\) inputs from the B meson decays. Meanwhile, the hadronic \(\Lambda _b\rightarrow \Lambda _c M_{(c)}\) decays with \(M=(\pi ^-,K^-)\) and \(M_c=(D^-,D^-_s)\) measured with high precisions are involved in the extraction. Explicitly, we find that \(|V_{cb}|=(44.6\pm 3.2)\times 10^{-3}\), agreeing with the value of \((42.11\pm 0.74)\times 10^{-3}\) from the inclusive \(B\rightarrow X_c\ell \bar{\nu }_\ell \) decays. Furthermore, based on the most recent ratio of \(|V_{ub}|/|V_{cb}|\) from the exclusive modes, we obtain \(|V_{ub}|=(4.3\pm 0.4)\times 10^{-3}\), which is close to the value of \((4.49\pm 0.24)\times 10^{-3}\) from the inclusive \(B\rightarrow X_u\ell \bar{\nu }_\ell \) decays. We conclude that our determinations of \(|V_{cb}|\) and \(|V_{ub}|\) favor the corresponding inclusive extractions in the B decays.  相似文献   

19.
By employing the generalized Hellmann-Feynman theorem, the quantization of mesoscopic complicated coupling circuit is proposed. The ensemble average energy, the energy fluctuation and the energy distribution are investigated at finite temperature. It is shown that the generalized Hellmann-Feynman theorem plays the key role in quantizing a mesoscopic complicated coupling circuit at finite temperature, and when the temperature is lower than the specific temperature, the value of \((\vartriangle {\hat {H}})^{2}\) is almost zero and the values of \(<\hat {{H}}>_{e} \) and \((\vartriangle \hat {{H}})^{2}\)are basically constant, but while the temperature rises to the specific temperature, both of them move upward rapidly. The energy fluctuation of the system becomes larger when the coupling inductance is larger or the coupling capacitance is smaller.  相似文献   

20.
We study the CP-violation effects from two types of neutrino mass matrices with (i) \((M_\nu )_{ee}=0\), and (ii) \((M_\nu )_{ee}=(M_\nu )_{e\mu }=0\), which can be realized by the high-dimensional lepton number violating operators \(\bar{\ell }_R^c\gamma ^\mu L_L (D_\mu \Phi )\Phi ^2\) and \(\bar{\ell }_R^c l_R (D_\mu {\Phi })^2\Phi ^2\), respectively. In (i), the neutrino mass spectrum is in the normal ordering with the lightest neutrino mass within the range \(0.002\,\mathrm{eV}\lesssim m_0\lesssim 0.007\,\mathrm{eV}\). Furthermore, for a given value of \(m_0\), there are two solutions for the two Majorana phases \(\alpha _{21}\) and \(\alpha _{31}\), whereas the Dirac phase \(\delta \) is arbitrary. For (ii), the parameters of \(m_0\), \(\delta \), \(\alpha _{21}\), and \(\alpha _{31}\) can be completely determined. We calculate the CP-violating asymmetries in neutrino–antineutrino oscillations for both mass textures of (i) and (ii), which are closely related to the CP-violating Majorana phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号