首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

As an emerging technology device, Quantum-dot cellular automata (QCA) may be a suitable substitute for traditional semiconductor transistor technology. Arithmetic logic unit in field-coupled QCA has been also studied extensively in recent year. In this paper, the new low-power Exclusive-OR gate is presented, which is mainly based on QCA cellular leveled format. This Exclusive-OR gate can be used to design various useful QCA circuits. By using this gate, we design and implement a novel full adder circuit with low dissipation. The circuit is designed using only 45 normal cells in a single layer without crossover. Compared with previous designs, both decimal adders achieve better performance in terms of latency and overall cost. The operation of the proposed circuit has been verified by QCADesigner version 2.0.3 and energy dissipation investigated by QCAPro tool. We also compared with previous designs in terms of power dissipation, cell-counts, area, latency and cost. The proposed full adder has the smallest area with less number of cells. And the total energy dissipation of our proposed full adder are only 0.05112 eV, 0.07454 eV and 0.10181 eV when tunneling energy levels are 0.5 Ek, 1 Ek and 1.5 Ek, respectively. The proposed single full adder also has the lowest total energy dissipation with a reduction of 20.94, 11.25 and 4.82% in 0.5 Ek, 1 Ek and 1.5 Ek tunneling energy levels, respectively when compared with the previous most power-efficient design.

  相似文献   

2.

The difficulties which the CMOS technology is facing at the nano scale has led to the investigation of quantum-dot cellular automata (QCA) nanotechnology and reversible logic as an alternative to conventional CMOS technology. In this paper, these two paradigms have been combined. Firstly, a new 3 × 3 reversible gate, SSG-QCA, which is universal and multifunctional in nature, is proposed and implemented in QCA using conventional 3-input majority voter based logic. By using the concept of explicit interaction of cells, the proposed gate is further optimized and then used to design an ultra-efficient 1-bit full adder in QCA. The universal nature has been verified by designing all the logic gates from the proposed SSG-QCA gate whereas the multifunctional nature is verified by implementing all the 13 standard Boolean functions. The proposed 3 × 3 gate and adder designs are then extensively compared with the existing literature and it is observed that the proposed designs are ultra-efficient in terms of both area and cost in QCA technology. In addition to this energy dissipation analysis for different scenarios is also done on all the designs and it is observed that the proposed designs dissipate minimum energy thereby making them suitable for ultra-low power designs.

  相似文献   

3.

Quantum dot cellular automata (QCA) is one of the nano-scale computing paradigms which promises high speed and ultra-low power consumption. Since the one-bit full adder is a fundamental building block of arithmetic circuits, designing an efficient QCA full adder cell is very imperative in this new technology. In this paper, we propose a QCA full adder using a new inverter gate which leads to reduced complexity and area occupation. The proposed layout is simulated by the QCA designer engines. We also provide a performance comparison of our proposed QCA full adder with the previous relevant designs. Furthermore, a detailed analysis of energy dissipation is performed which demonstrates the superiority of the proposed design in terms of the energy efficiency.

  相似文献   

4.

Quantum-dot cellular automata (QCA) nanotechnology is emerging as a replacement technique for maintaining increasing microprocessor performance and it yields small size, high speed, and low power consumption. On the other hand, a multiplier is a circuit that multiplies two binary values for performing sequential addition operations and accumulating the results. This type of circuit is the basic structural unit of many arithmetic logical units, digital signal processing, and communication system. The multiplier circuit contains some full adders that can perform add operations, so, it is very important that low-complexity full adders are used. Therefore, in this paper, a new 2 × 2 array multiplier circuit in QCA by employing an efficient structure of full adder is designed and implemented. This design is constructed using coplanar layouts and compared its performance with existing QCA multipliers. The operation and efficiency of the proposed structure have been confirmed using QCADesigner tool. The simulation results have demonstrated that the 2 × 2 multiplier leads to less cell count and area as the prime designing factors.

  相似文献   

5.
Quantum-dot cellular automata (QCA), a new computing paradigm at nanoscale, may be a prospective alternative to conventional CMOS-based integrated circuits. Modular design methodology in QCA domain has not been widely investigated. In this paper, an efficient module with fault tolerance is proposed, which can be employed to fabricate three-input and five-input majority gates that are the fundamental primitives for designing circuits in QCA. With cells omission in the versatile module, various logic gates will be achieved, such as Nand-Nor-Inverter (NNI) gate and And-Or-Inverter (AOI) gate. Moreover, in order to seek out an efficient full adder, five various QCA full adders are designed and exhaustively compared in terms of area, complexity, latency, reliability and power dissipation and also compared with existing fault-tolerant full adders. Two simulation tools, QCADesigner and QCAPro, are utilized in the waveform simulations for verifying the correctness of proposed circuits and power consumption, respectively. The analysis results reveal that full adder V has significant improvements in contrast to its counterparts with above criteria. To test the practicability of full adder V, multi-bit adders will be designed in single-layer and compared with previous adders in terms of area, complexity and QCA cost, which proves the merits of our work.  相似文献   

6.
Some new technologies such as Quantum-dot Cellular Automata (QCA) is suggested to solve the physical limits of the Complementary Metal-Oxide Semiconductor (CMOS) technology. The QCA as one of the novel technologies at nanoscale has potential applications in future computers. This technology has some advantages such as minimal size, high speed, low latency, and low power consumption. As a result, it is used for creating all varieties of memory. Counter circuits as one of the important circuits in the digital systems are composed of some latches, which are connected to each other in series and actually they count input pulses in the circuit. On the other hand, the reversible computations are very important because of their ability in reducing energy in nanometer circuits. Improving the energy efficiency, increasing the speed of nanometer circuits, increasing the portability of system, making smaller components of the circuit in a nuclear size and reducing the power consumption are considered as the usage of reversible logic. Therefore, this paper aims to design a two-bit reversible counter that is optimized on the basis of QCA using an improved reversible gate. The proposed reversible structure of 2-bit counter can be increased to 3-bit, 4-bit and more. The advantages of the proposed design have been shown using QCADesigner in terms of the delay in comparison with previous circuits.  相似文献   

7.
Quantum-dot Cellular Automata (QCA) technology is a suitable technology to replace CMOS technology due to low-power consumption, high-speed and high-density devices. Full adder has an important role in the digital circuit design. This paper presents and evaluates a novel single-layer four-bit QCA Ripple Carry Adder (RCA) circuit. The developed four-bit QCA RCA circuit is based on novel QCA full adder circuit. The developed circuits are simulated using QCADesigner tool version 2.0.3. The simulation results show that the developed circuits have advantages in comparison with existing single-layer and multilayer circuits in terms of cell count, area occupation and circuit latency.  相似文献   

8.

The novel emerging technology, QCA technology, is a candidate for replacing CMOS technology. Full Adder (FA) circuits are also widely used circuits in arithmetic circuits design. In this paper, two new multilayer QCA architectures are presented: one-bit FA and 4-bit Ripple Carry Adder (RCA). The designed one-bit multilayer FA architecture is based on a new XOR gate architecture. The designed 4-bit multilayer QCA RCA is also developed based on the designed one-bit multilayer QCA FA. The functionality of the designed architectures are verified using QCADesigner tool. The results indicate that the designed architecture for 4-bit multilayer QCA RCA requires 5 clock phases, 125 QCA cells, and 0.17 μm2 area. The comparison results confirm that the designed architectures provide improvements compared with other adder architectures in terms of cost, cell count, and area.

  相似文献   

9.
The challenges which the CMOS technology is facing toward the end of the technology roadmap calls for an investigation of various logical and technological solutions to CMOS at the nano scale. Two such paradigms which are considered in this paper are the reversible logic and the quantum-dot cellular automata (QCA) nanotechnology. Firstly, a new 3 × 3 reversible and universal gate, RG-QCA, is proposed and implemented in QCA technology using conventional 3-input majority voter based logic. Further the gate is optimized by using explicit interaction of cells and this optimized gate is then used to design an optimized modular full adder in QCA. Another configuration of RG-QCA gate, CRG-QCA, is then proposed which is a 4 × 4 gate and includes the fault tolerant characteristics and parity preserving nature. The proposed CRG-QCA gate is then tested to design a fault tolerant full adder circuit. Extensive comparisons of gate and adder circuits are drawn with the existing literature and it is envisaged that our proposed designs perform better and are cost efficient in QCA technology.  相似文献   

10.
Quantum-dot Cellular Automata (QCA) has been potentially considered as a supersede to Complementary Metal–Oxide–Semiconductor (CMOS) because of its inherent advantages. Many QCA-based logic circuits with smaller feature size, improved operating frequency, and lower power consumption than CMOS have been offered. This technology works based on electron relations inside quantum-dots. Due to the importance of designing an optimized decoder in any digital circuit, in this paper, we design, implement and simulate a new 2-to-4 decoder based on QCA with low delay, area, and complexity. The logic functionality of the 2-to-4 decoder is verified using the QCADesigner tool. The results have shown that the proposed QCA-based decoder has high performance in terms of a number of cells, covered area, and time delay. Due to the lower clock pulse frequency, the proposed 2-to-4 decoder is helpful for building QCA-based sequential digital circuits with high performance.  相似文献   

11.
Nanotechnologies, remarkably Quantum-dot Cellular Automata (QCA), offer an attractive perspective for future computing technologies. In this paper, QCA is investigated as an implementation method for reversible logic. A novel Reversible Gate is developed using QCA technology. Performance of the proposed gate is verified using thirteen standard three variables Boolean functions, which demonstrate from 14.3% to 42.8% superiority in term of gate counts obtained with other reversible gates. Proposed reversible gate requires switching and leakage energy dissipation of 0.168 eV and 0.271 eV, respectively, at 1.5 Ek energy level. The proposed gate uses 146 cells occupying only 0.14 μ m2 area and then used to design a full adder. We use a coplanar QCA crossover architecture in the designs that uses non-adjacent clock zones for the two crossing wires. These designs have been realized with QCADesigner.  相似文献   

12.
Various proposed optical computing devices involve nonlinear optical operation and use semiconductor optical amplifier (SOA)-based switches as fundamental elements for logic operations. Due to the nonlinear operation, these devices suffer from high power that causes problems in very large-scale optical integration. In this paper, a method is proposed to implement arithmetic operations using a photonic crystal (PhC) cell and eliminate the SOA-based switches altogether. The proposed method is employed on designing an all-optical full adder/subtractor circuit that requires only beam combiners and photonic crystal NOT gates.  相似文献   

13.
Reversible logic is a new rapidly developed research field in recent years, which has been receiving much attention for calculating with minimizing the energy consumption. This paper constructs a 4×4 new reversible gate called ZRQ gate to build quantum adder and subtraction. Meanwhile, a novel 1-bit reversible comparator by using the proposed ZRQC module on the basis of ZRQ gate is proposed as the minimum number of reversible gates and quantum costs. In addition, this paper presents a novel 4-bit reversible comparator based on the 1-bit reversible comparator. One of the vital important for optimizing reversible logic is to design reversible logic circuits with the minimum number of parameters. The proposed reversible comparators in this paper can obtain superiority in terms of the number of reversible gates, input constants, garbage outputs, unit delays and quantum costs compared with the existed circuits. Finally, MATLAB simulation software is used to test and verify the correctness of the proposed 4-bit reversible comparator.  相似文献   

14.
The quantum-dot cellular automata (QCA) can be replaced to overcome the limitation of CMOS technology. An arithmetic logic unit (ALU) is a basic structure of any computer devices. In this paper, design of improved single-bit arithmetic logic unit in quantum dot cellular automata is presented. The proposed structure for ALU has AND, OR, XOR and ADD operations. A unique 2:1 multiplexer, an ultra-efficient two-input XOR and a low complexity full adder are used in the proposed structure. Also, an extended design of this structure is provided for two-bit ALU in this paper. The proposed structure of ALU is simulated by QCADesigner and simulation result is evaluated. Evaluation results show that the proposed design has best performance in terms of area, complexity and delay compared to the previous designs.  相似文献   

15.
Quantum-dot Cellular Automata (QCA) is a new technology for replacing CMOS technology at nano-scale dimansion. Shift registers have commonly used circuit in the digital circuits design. In this paper, a new 3-bit Serial Input-Serial Output (SISO) QCA shift register is presented. The proposed circuit uses 3 novel D-Flip-Flops (D-FFs) that are developed in this paper. The proposed circuits are implemented by using QCADesigner tool version 2.0.3. The developed QCA SISO shift register has 120 cells and 0.03 μm2 area. The results show that the developed circuits have advantages compared to other QCA circuits in terms of area.  相似文献   

16.

Quantum-dot Cellular Automata (QCA) is novel prominent nanotechnology. It promises a substitution to Complementary Metal–Oxide–Semiconductor (CMOS) technology with a higher scale integration, smaller size, faster speed, higher switching frequency, and lower power consumption. It also causes digital circuits to be schematized with incredible velocity and density. The full adder, compressor, and multiplier circuits are the basic units in the QCA technology. Compressors are an important class of arithmetic circuits, and researchers can use quantum compressors in the structure of complex systems. In this paper, first, a novel three-input multi-layer full-adder in QCA technology is designed, and based on it, a new multi-layer 4:2 compressor is presented. The proposed QCA-based full-adder and compressor uses an XOR gate. The proposed design offers good performance regarding the delay, area size, and cell number comparing to the existing ones. Also, in this gate, the output signal is not enclosed, and we can use it easily. The accuracy of the suggested circuits has been assessed with the utilization of QCADesigner 2.0.3. The results show that the proposed 4:2 compressor architecture utilizes 75 cell and 1.25 clock phases, which are efficient than other designs.

  相似文献   

17.
The Quantum-dot Cellular Automata (QCA) is the prominent paradigm of nanotechnology considered to continue the computation at deep sub-micron regime. The QCA realizations of several multilevel circuit of arithmetic logic unit have been introduced in the recent years. However, as high fan-in Binary to Gray (B2G) and Gray to Binary (G2B) Converters exist in the processor based architecture, no attention has been paid towards the QCA instantiation of the Gray Code Converters which are anticipated to be used in 8-bit, 16-bit, 32-bit or even more bit addressable machines of Gray Code Addressing schemes. In this work the two-input Layered T module is presented to exploit the operation of an Exclusive-OR Gate (namely LTEx module) as an elemental block. The “defect-tolerant analysis” of the two-input LTEx module has been analyzed to establish the scalability and reproducibility of the LTEx module in the complex circuits. The novel formulations exploiting the operability of the LTEx module have been proposed to instantiate area-delay efficient B2G and G2B Converters which can be exclusively used in Gray Code Addressing schemes. Moreover this work formulates the QCA design metrics such as O-Cost, Effective area, Delay and Cost α for the n-bit converter layouts.  相似文献   

18.

One of the emerging technology that can be used for replacing CMOS technology is Quantum-dot Cellular Automata (QCA) technology. Counter circuits are widely used circuits in the design of digital circuits. This paper presents and evaluates circuits for 2-, 3-, 4-, and 5-bit coplanar counter in the QCA technology. The designed QCA coplanar counter circuits are based on the modified D-Flip-Flop (D-FF) circuit that is designed in this paper. The designed QCA circuits are implemented and verified by using QCADesigner tool version 2.0.3. The results show that the designed circuits for 2-, 3-, 4-, and 5-bit coplanar counter contain 44 (0.03 μm2), 93 (0.07 μm2), 160 (0.13 μm2), and 245 (0.2 μm2) quantum cells (area). The comparison results indicate that the designed circuits have advantages compared to other QCA circuits in terms of cost, area, and cell count.

  相似文献   

19.
Quantum-dot cellular automata (QCA) is one of the emergent nano-technologies and a potential substitute for transistor based technologies. In this research, an efficient QCA based T, SR and JK flip-flops have been proposed. The proposed gates are implemented with multiplexer, three-input Majority gate and XOR gate. The circuit layouts are designed and verified using QCADesigner version 2.0.3. The simulation result reviles the excellence of the proposed design. The proposed T flip-flop archives 35% improvement in terms cell count. Similarly, the reported RS and JK flip-flop requires 43% and 50% less area respectively in comparison to the previous best single layer design. In addition, QCAPro tool has been used to estimate the power dissipation of all considered designs at different tunneling energy level.  相似文献   

20.
In recent years, reversible logic has emerged as a promising computing paradigm having application in low-power CMOS, quantum computing, nanotechnology and optical computing. Optical logic gates have the potential to work at macroscopic (light pulses carry information), or quantum (single photons carry information) levels with great efficiency. However, relatively little has been published on designing reversible logic circuits in all-optical domain. In this paper, we propose and design a novel scheme of Toffoli and Feynman gates in all-optical domain. We have described their principle of operations and used a theoretical model to assist this task, finally confirming through numerical simulations. Semiconductor optical amplifier (SOA)-based Mach-Zehnder interferometer (MZI) can play a significant role in this field of ultra-fast all-optical signal processing. The all-optical reversible circuits presented in this paper will be useful to perform different arithmetic (full adder, BCD adder) and logical (realization of Boolean function) operations in the domain of reversible logic-based information processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号