首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The concept of steering was introduced by Schr?dinger in 1935 as a generalization of the Einstein-Podolsky-Rosen paradox for arbitrary pure bipartite entangled states and arbitrary measurements by one party. Until now, it has never been rigorously defined, so it has not been known (for example) what mixed states are steerable (that is, can be used to exhibit steering). We provide an operational definition, from which we prove (by considering Werner states and isotropic states) that steerable states are a strict subset of the entangled states, and a strict superset of the states that can exhibit Bell nonlocality. For arbitrary bipartite Gaussian states we derive a linear matrix inequality that decides the question of steerability via Gaussian measurements, and we relate this to the original Einstein-Podolsky-Rosen paradox.  相似文献   

2.
Entanglement is a useful resource because some global operations cannot be locally implemented using classical communication. We prove a number of results about what is and what is not locally possible. We focus on orthogonal states, which can always be globally distinguished. We establish the necessary and sufficient conditions for a general set of 2 x 2 quantum states to be locally distinguishable, and for a general set of 2 x n quantum states to be distinguished given an initial measurement of the qubit. These results reveal a fundamental asymmetry to nonlocality, which is the origin of "nonlocality without entanglement," and we present a very simple proof of this phenomenon.  相似文献   

3.
We propose a scheme for the generation of arbitrary coherent superpositions of vortex states in Bose-Einstein condensates (BEC) using the orbital-angular-momentum states of light. We devise a scheme to generate coherent superpositions of two such counterrotating states of light using well-known experimental techniques. We show that a specially designed Raman scheme allows for transfer of the optical vortex-superposition state onto an initially nonrotating BEC. This creates an arbitrary and coherent superposition of a vortex and antivortex pair in the BEC. The ideas presented here could be extended to generate entangled vortex states, design memories for the orbital-angular-momentum states of light, and perform other quantum information tasks. Applications to inertial sensing are also discussed.  相似文献   

4.
We study phase properties of generalized coherent states obtained from usual Fock coherent states by adapting classical methods of statistical mechanics, in particular, the well-known procedure of thermodynamical limit. Moreover, we show that there exists a close connection between these states and the states describing boson systems with condensation properties.  相似文献   

5.

The usual no-cloning theorem implies that two quantum states are identical or orthogonal if we allow a cloning to be on the two quantum states. Here, we investigate a relation between the no-cloning theorem and the projective measurement theory that the results of measurements are either + 1 or − 1. We introduce the Kochen-Specker (KS) theorem with the projective measurement theory. We result in the fact that the two quantum states under consideration cannot be orthogonal if we avoid the KS contradiction. Thus the no-cloning theorem implies that the two quantum states under consideration are identical in that case. It turns out that the KS theorem with the projective measurement theory says a new version of the no-cloning theorem. Next, we investigate a relation between the no-cloning theorem and the measurement theory based on the truth values that the results of measurements are either + 1 or 0. We return to the usual no-cloning theorem that the two quantum states are identical or orthogonal in the case.

  相似文献   

6.
In analogy with the definition of resonant or quasi-bound states used in three-dimensional quantal scattering, we define the quasi-bound states that occur in one-dimensional transmission generated by twin symmetric potential barriers and evaluate their energies and widths using two typical examples: (i) twin rectangular barrier and (ii) twin Gaussian-type barrier. The energies at which reflectionless transmission occurs correspond to these states and the widths of the transmission peaks are also the same as those of quasi-bound states. We compare the behaviour of the magnitude of wave functions of quasi-bound states with those for bound states and with the above-barrier state wave function. We deduce a Breit-Wigner-type resonance formula which neatly describes the variation of transmission coefficient as a function of energy at below-barrier energies. Similar formula with additional empirical term explains approximately the peaks of transmission coefficients at above-barrier energies as well. Further, we study the variation of tunnelling time as a function of energy and compare the same with transmission, reflection time and Breit-Wigner delay time around a quasi-bound state energy. We also find that tunnelling time is of the same order of magnitude as lifetime of the quasi-bound state, but somewhat larger.  相似文献   

7.
李明  费少明  李先清 《中国物理 B》2010,19(9):90315-090315
We show that although we cannot distil a singlet from many pairs of bound entangled states, the concurrence and the tangle of two entangled quantum states are always strictly larger than those of one of them, even both entangled quantum states are bound entangled. We present a relation between the concurrence and the fidelity of optimal teleportation. We also give new upper and lower bounds for concurrence and tangle.  相似文献   

8.
We study the nature of biomolecular binding. We found that in general there exists several thermodynamic phases: a native binding phase, a non-native phase, and a glass or local trapping phase. The quantitative optimal criterion for the binding specificity is found to be the maximization of the ratio of the binding transition temperature versus the trapping transition temperature, or equivalently the ratio of the energy gap of binding between the native state and the average non-native states versus the dispersion or variance of the non-native states. This leads to a funneled binding energy landscape.  相似文献   

9.
The states of the qubit, the basic unit of quantum information, are 2 × 2 positive semi-definite Hermitian matrices with trace 1. We contribute to the program to axiomatize quantum mechanics by characterizing these states in terms of an entropic uncertainty principle formulated on an eight-point phase space. We do this by employing Rényi entropy (a generalization of Shannon entropy) suitably defined for the signed phase-space probability distributions that arise in representing quantum states.  相似文献   

10.
11.
We establish a close quantitative analogy between the excitation and ionization process of highly excited one electron Rydberg states under microwave driving and charge transport across disordered 1D lattices. Our results open a new arena for Anderson localization -- a disorder induced effect -- in a large class of perfectly deterministic, decaying atomic systems.Received: 15 November 2002, Published online: 8 July 2003PACS: 32.80.Rm Multiphoton ionization and excitation to highly excited states (e.g., Rydberg states) - 05.45.Mt Quantum chaos; semiclassical methods - 72.15.Rn Localization effects (Anderson or weak localization)  相似文献   

12.
The projected entangled pair state (PEPS) representation of quantum states on two-dimensional lattices induces an entanglement based hierarchy in state space. We show that the lowest levels of this hierarchy exhibit a very rich structure including states with critical and topological properties. We prove, in particular, that coherent versions of thermal states of any local 2D classical spin model correspond to such PEPS, which are in turn ground states of local 2D quantum Hamiltonians. This correspondence maps thermal onto quantum fluctuations, and it allows us to analytically construct critical quantum models exhibiting a strict area law scaling of the entanglement entropy in the face of power law decaying correlations. Moreover, it enables us to show that there exist PEPS which can serve as computational resources for the solution of NP-hard problems.  相似文献   

13.
14.
We report new results and generalizations of our work on unextendible product bases (UPB), uncompletable product bases and bound entanglement. We present a new construction for bound entangled states based on product bases which are only completable in a locally extended Hilbert space. We introduce a very useful representation of a product basis, an orthogonality graph. Using this representation we give a complete characterization of unextendible product bases for two qutrits. We present several generalizations of UPBs to arbitrary high dimensions and multipartite systems. We present a sufficient condition for sets of orthogonal product states to be distinguishable by separable superoperators. We prove that bound entangled states cannot help increase the distillable entanglement of a state beyond its regularized entanglement of formation assisted by bound entanglement.  相似文献   

15.
We consider a general class of disordered mean-field models where both the spin variables and disorder variables η take finitely many values. To investigate the size-dependence in the phase-transition regime we construct the metastate describing the probabilities to find a large system close to a particular convex combination of the pure infinite-volume states. We show that, under a non-degeneracy assumption, only pure states j are seen, with non-random probability weights w j for which we derive explicit expressions in terms of interactions and distributions of the disorder variables. We provide a geometric construction distinguishing invisible states (having w j =0) from visible ones. As a further consequence we show that, in the case where precisely two pure states are available, these must necessarily occur with the same weight, even if the model has no obvious symmetry relating the two.  相似文献   

16.
We consider a family of states describing three-qubit systems. We derived formulas showing the relations between linear entropy and measures of coherence such as degree of coherence, first- and second-order correlation functions. We show that qubit–qubit states are strongly entangled when linear entropy reaches some range of values. For such states, we derived the conditions determining boundary values of linear entropy parametrized by measures of coherence.  相似文献   

17.
We study, experimentally and numerically, amorphous photonic lattices and the existence of band gaps therein. Our amorphous system comprises 2D waveguides distributed randomly according to a liquidlike model responsible for the absence of Bragg peaks, as opposed to ordered lattices with disorder which always exhibit Bragg peaks. In amorphous lattices the bands comprise localized states, but we find that defect states residing in the gap are more localized than the localization length of states within the band. Finally, we show how the concept of effective mass carries over to amorphous photonic lattices.  相似文献   

18.
Polarization states of a photon are the most natural degrees of freedom for encoding classical information bits. The two-dimensional space of states associated with polarization degrees of freedom of the photon is insufficient for many problems of information transfer with quantum states. We propose to use the polarization degrees of freedom of composite states of photons (polarization qutrits) for secret cryptographic key distribution.  相似文献   

19.
This is a short review on selected theory developments on tensor network (TN) states for strongly correlated systems. Specifically, we briefly review the effect of symmetries in TN states, fermionic TNs, the calculation of entanglement Hamiltonians from projected entangled pair states (PEPS), and the relation between the multi-scale entanglement renormalization ansatz (MERA) and the AdS/CFT or gauge/gravity duality. We stress the role played by entanglement in the emergence of several physical properties and objects through the TN language. Some recent results along these lines are also discussed.  相似文献   

20.
We have studied the development of metastable properties associated with a nearly spin-degenerate two-dimensional electron system. Application of large hydrostatic pressure significantly reduces the g-factor experienced by electrons in GaAs/AlGaAs heterostructure, and various fractional quantum Hall effect (FQHE) states are found to undergo transition to a spin-unpolarized ground state. In case of even numerator FQHE states, the spin transitions are accompanied by hysteresis and nonlinearity in the magnetotransport. These results strongly support a recent theory of quantum Hall magnetism in which competition between spin-polarized and spin-unpolarized ground states leads to an ordered phase that exhibits ferromagnetic correlation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号