首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new and simple method has been developed to synthesize large quantities of highly monodisperse tetragonal zirconia nanocrystals. In this synthesis, a nonhydrolytic sol-gel reaction between zirconium(IV) isopropoxide and zirconium(IV) chloride at 340 degrees C generated 4 nm sized zirconia nanoparticles. A high-resolution transmission electron microscopic (HRTEM) image showed that the particles have a uniform particle size distribution and that they are highly crystalline. These monodisperse nanoparticles were synthesized without any size selection process. X-ray diffraction studies combined with Rietveld refinement revealed that the ZrO(2) nanocrystals are the high-temperature tetragonal phase, and very close to a cubic phase. When zirconium(IV) bromide is used as a precursor instead of zirconium chloride, zirconia nanoparticles with an average size of 2.9 nm were obtained. The UV-visible absorption spectrum of 4 nm sized zirconia nanoparticles exhibited a strong absorption starting at around 270 nm. A fluorescence spectrum with excitation at 300 nm showed a broad fluorescence band centered around 370 nm. FTIR spectra showed indication of TOPO binding on the ZrO(2) nanoparticle surface. These optical studies also suggest that the nanoparticles are of high quality in terms of narrow particle size distribution and relatively low density of surface trap states.  相似文献   

2.
We have synthesized a novel set of pyrene-functionalized, covalently bound surface adlayers with and without cholesterol derivatives coadded to the adlayer. We have deposited these adlayers on quartz, oxidized silicon wafers, and indium-doped tin oxide coated substrates. The addition of tethered cholesterol to the adlayer creates a hydrophobic, likely disordered, microenvironment in which the surface-bound pyrene resides. X-ray photoelectron spectroscopy measurements demonstrate the covalent attachment of both cholesterol and pyrene in our adlayers. The presence of the cholesterol moieties gives rise to a reduction in film thickness, as measured ellipsometrically, and contact angle data indicate significant surface heterogeneity. Steady-state fluorescence data show that the presence of cholesterol moieties reduces the extent of pyrene excimer formation and provides a less polar environment for the chromophore. Fluorescence lifetime measurements on surface-bound pyrene were biexponential, consistent with multiple local environments, regardless of whether tethered cholesterol was present or not. Cyclic voltammetry reveals competition between the pyrene and cholesterol moieties for binding to available surface sites on the epoxide-terminated surface-binding layer we use.  相似文献   

3.
Ion mobility and calorimetry measurements have been used to probe the nature of the phase transitions in gallium clusters with 29-55 atoms. While most clusters appear to undergo a first-order transition between solidlike and liquidlike phases, a few show the signature of melting without a significant latent heat. These transitions appear to be the finite size analogue of a second-order phase transition, and they presumably occur for some cluster sizes because their solidlike phase is amorphous.  相似文献   

4.
Pure monoclinic (m) and tetragonal (t) zirconia nanoparticles were readily synthesized from the reaction of inorganic zirconium salts (e.g., hydrated zirconyl nitrate) and urea in water and methanol, respectively, via a facile solvothermal method. The role of the solvents was crucial in the formation of the pure ZrO(2) phases, whereas their purity was essentially insensitive to other variables, including reaction temperature, reactant concentration, pH, and zirconium salts. Water as the solvent led to the transformation of hydrous ZrO(2) precipitates initially formed with tetragonal structures to thermodynamically more stable m-ZrO(2) via the dissolution-precipitation process, whereas methanol favored the removal of water molecules from the precursors via their reaction with urea, consequently maintaining the tetragonal structures. The obtained tetragonal samples were found to possess superior hydrothermal stability compared to those reported previously, which provides the possibility for systematically studying the effects of ZrO(2) phases on many catalytic reactions involving water as a reactant or product. Using these pure m- and t-ZrO(2) phases as supports, dispersed MoO(x) catalysts were synthesized at MoO(x) surface densities of approximately 5.0 Mo/nm(2), which is close to one monolayer of coverage. Characterization by X-ray diffraction and Raman spectroscopy confirmed that the pure ZrO(2) phases remained unchanged in the presence of the MoO(x) domains and the MoO(x) domains existed preferentially as 2D polymolybdate structures. The catalysts were subsequently examined for selective methanol oxidation as a test reaction. m-ZrO(2) support led to 2-fold greater oxidation rates than for t-ZrO(2) support, reflecting the higher intrinsic reactivity of the MoO(x) domains on m-ZrO(2). This is consistent with their higher reducibility probed by temperature-programmed reduction with H(2) (H(2) TPR). These observed effects of the ZrO(2) phases provide the basis for designing catalysts with tunable redox properties and reactivity.  相似文献   

5.
Microfluidic-NMR spectroscopy has been extended to study the kinetics in supramolecular chemistry and molecular assembly. Kinetics of a multicomponent host-guest supramolecular system containing viologen derivatives, β-cyclodextrins and cucurbit [7]urils are studied by a PMMA based microfluidic chip combined with a dedicated transmission line probe for NMR detection. By combining microfluidic technology with NMR spectroscopy, the amount of material required for a full kinetic study could be minimized. This is crucial in supramolecular chemistry, which often involves highly sophisticated and synthetically costly building blocks. The small size of the microfluidic structure is crucial in bringing the time scale for kinetic monitoring down to seconds. At the same time, the transmission line NMR probe provides sufficient sensitivity to work at low (2 mM) concentrations.  相似文献   

6.
We investigate the subtle effects of the diffuse charged layer on interfacial kinetics by solving the governing equations for ion transport (Nernst–Planck) with realistic boundary conditions representing reaction kinetics (Butler–Volmer) and compact-layer capacitance (Stern) in the asymptotic limit =λD/L→0, where λD is the Debye screening length and L is the distance between the working and counter electrodes. Using the methods of singular perturbation theory, we derive the leading-order steady-state response to a nonzero applied current in the case of the oxidation of a neutral species into cations, without any supporting electrolyte. In certain parameter regimes, the theory predicts a reaction-limited current smaller than the classical diffusion-limited current; this over potential effect is not due to ohmic drop effects in the bulk of the cell but rather to antagonist processes involved in the surface charge transfer and diffuse layer charging respectively. We demonstrate that the charging of diffuse charge, since it is intimately coupled to the surface reaction and cannot be considered independently, plays a fundamental role in nonequilibrium surface reactions when the transport of one of the reacting species is coupled to the total interfacial response of the compact and diffuse layers.  相似文献   

7.
Size effects on liquid crystal phase transitions are investigated by scanning calorimetry of samples absorbed in porous silica. For pore diameter of order 100 Å, the liquid crystal transition depressions are of order 0.1°C and the solid melting points of order 10°C.  相似文献   

8.
The high-temperature heat capacity of zirconia was directly measured by differential scanning calorimetry between T = (1050 and 1700) K and derived from the heat content measured by transposed temperature drop calorimetry between T = (970 and 1770) K, including the monoclinic–tetragonal (m–t) phase transition region. The enthalpy and entropy of the m–t phase transition are (5.43 ± 0.31) kJ · mol−1 and (3.69 ± 0.21) J · K−1 · mol−1, respectively. Values of thermodynamic functions are provided from room temperature to 2000 K.  相似文献   

9.
Micelle-vesicle-micelle (MVM) transitions are observed in the aqueous-mixed ionic liquid (1-butyl-3-methylimidazolium octyl sulfate and 3-methyl-1-octylimidazolium chloride) system. The surface activity of mixed ILs, phase behavior, and solution structures in the system have been thoroughly characterized using conductometry, tensiometry, fluorimetry, dynamic light scattering (DLS), viscometry, turbidity, atomic force microscopy (AFM), transmission electron microscopy (TEM), and (1)H NMR techniques. Synergetic interactions between the two ILs in monolayers at the air/water interface and in micelles/vesicles have been determined using the regular solution approach, and the origins of spontaneous vesicle formation in this novel system are discussed. Using a photoreduction method, the formation of stable gold nanoparticles (GNPs) and microscale nanosheets of different shapes and sizes in the micellar and vesicle solutions has been reported. The studies show the potential of a mixed IL system in constructing stable micelles/supramolecular assemblies, such as bilayer vesicles, which are effective in the preparation of the desired nanomaterials.  相似文献   

10.
The thermodynamic nature of phase stabilities and transformations are investigated in crystalline and amorphous Ge(1)Sb(2)Te(4) (GST124) phase change materials as a function of pressure and temperature using high-resolution synchrotron x-ray diffraction in a diamond anvil cell. The phase transformation sequences upon compression, for cubic and hexagonal GST124 phases are found to be: cubic → amorphous → orthorhombic → bcc and hexagonal → orthorhombic → bcc. The Clapeyron slopes for melting of the hexagonal and bcc phases are negative and positive, respectively, resulting in a pressure dependent minimum in the liquidus. When taken together, the phase equilibria relations are consistent with the presence of polyamorphism in this system with the as-deposited amorphous GST phase being the low entropy low-density amorphous phase and the laser melt-quenched and high-pressure amorphized GST being the high entropy high-density amorphous phase. The metastable phase boundary between these two polyamorphic phases is expected to have a negative Clapeyron slope.  相似文献   

11.
Mesoporous tetragonal sulfated zirconia with high surface area and narrow pore-size distribution was prepared using Zr(O-nPr)_4 as zirconium precursor,sulfuric acid as sulfur source and triblock copolymer poly(ethylene glycol)-poly(propylene glycol)-poly (ethylene glycol)(P123) as the template.The samples were characterized by X-ray diffraction,N_2 sorption,TEM,and NH_3-TPD. A phase transformation from monoclinic sulfated zirconia to tetragonal sulfated zirconia is observed.The product shows strong acidi...  相似文献   

12.
Fluorous chemistry, involving the use of a fluorous label for the functionalization of a substrate and a fluorous solvent for extraction of the functionalized substrate, is shown to be effective in solubilizing gold and CdSe nanoparticles in a fluorous medium, through phase transfer from an aqueous or a hydrocarbon medium. While these nanoparticles were functionalized with a fluorous thiol, single-walled carbon nanotubes and ZnO nanorods could be solubilized in a fluorous medium by reacting them with a fluorous amine. Fluorous chemistry enables the solubilization of the nanostructures in the most nonpolar liquid medium possible.  相似文献   

13.
The dynamics of the deswelling and swelling processes in thermoresponsive poly-N-isopropylacrylamide (pNIPAm) hydrogel nanoparticles have been studied by using time-resolved transmittance measurements, in combination with a nanosecond laser-induced temperature-jump (T-jump) technique. A decrease in the solution transmittance associated with deswelling of the particles has been observed as the solution temperature traverses the volume phase transition temperature of the particles. Upon inducing the T-jump, the deswelling transition only occurs in a small percentage (<10%) of the particle volume, which was found to be a thin periphery layer of the particles. The particle deswelling occurs on the microsecond time scale, and as shown previously, the collapse time can be tuned via adding small amounts of hydrophobic component to the particle shell. In contrast, the reswelling of the particles was thermodynamically controlled by bath equilibration, and only small differences in particle reswelling kinetics were found due to sluggish heat dissipation (millisecond time scale) from the sample cell.  相似文献   

14.
A method for calculating the work of nucleus formation in vapor-liquid phase transitions in the presence of ions was suggested. The method took into account ions localized in the boundary surface layer of a nucleus. Analytic equations for nucleation frequency were obtained. The frequency of heterogeneous nucleation was calculated for supersaturated vapors of high-and low-polarity substances.  相似文献   

15.
Desorption of carbon tetrachloride from beneath an amorphous solid water (ASW) overlayer is explored utilizing a combination of temperature programmed desorption and infrared spectroscopy. Otherwise inaccessible information about the dewetting and crystallization of ASW is revealed by monitoring desorption of the CCl(4) underlayer. The desorption maximum of CCl(4) on graphene occurs at ~140 K. When ASW wets the CCl(4) no desorption below 140 K is observed. However, the mobility of the water molecules increases with ASW deposition temperature, leading to a thermodynamically driven dewetting of water from the hydrophobic CCl(4) surface. This dewetting exposes some CCl(4) to the ambient environment, allowing unhindered desorption of CCl(4) below 140 K. When ASW completely covers the underlayer, desorption of CCl(4) is delayed until crystallization induced cracking of the ASW overlayer opens an escape path to the surface. The subsequent rapid episodic release of CCl(4) is termed a "molecular volcano". Reflection absorption infrared spectroscopy (RAIRS) measurements indicate that the onset and duration of the molecular volcano is directly controlled by the ASW crystallization kinetics.  相似文献   

16.
在ZrO(NO_3)_2·2H_2O-CO(NH_2)_2-CH_3OH溶剂热过程中,水的缺乏使得甲醇通过其甲氧基与Zr~(4+)发生亲核取代或以分子配位,直接参与锆盐的水解-缩聚反应,形成具有[ZrO_z(OH)_p(OCH_3)_q·rCH_3OH]_n结构的无机聚合物;同时,甲醇对聚合物低的溶解能力强烈抑制了Ostwald熟化过程,阻碍了溶剂热产物的晶化与热力学支持的结构重排。尿素通过其水解作用与锆盐竞争体系中的水及锆物种骨架上的羟基,这不仅导致无机聚合物中Zr-O-Zr键合相对Zr-OH键合的比例增加,使得溶剂热产物发生结构重排的几率进一步下降;而且也一定程度上增加了溶剂热产物中甲氧基的含量。含有大量甲氧基团的溶剂热产物经400℃焙烧后,形成C掺杂ZrO_2。C掺杂与溶剂效应共同稳定了ZrO_2的四方相。在500-600℃中等温度、空气气氛焙烧过程中,C掺杂ZrO_2四方相结构显示了良好的热稳定性;提高焙烧温度至700℃,游离于颗粒表面的C被完全氧化去除,固溶于晶格中的C也部分脱溶,导致了部分四方相失稳转变成单斜相。  相似文献   

17.
Rare-earth doped oxyfluoride glasses and nanocrystalline glass ceramics have been prepared and studied by energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) aiming at investigating the structure and the symmetry of the nanocrystal as well as the site of the rare-earth ion. To solve the problem encountered by previous researchers due to glass host interference, we etched off glass matrix and released the fluoride nanocrystal, which is more convenient for EDS measurement. A tetragonal phase model with the chemical formula as PbREF(5) proved by quantitative EDS and XRD analyses has been proposed in this paper for the first time. Two specific crystalline phases with the same space group have been observed at 460 °C-500 °C and 520 °C-560 °C, respectively. Moreover, a super "pseudo-cubic" cell based on our tetragonal model may give a good explanation to the probable previous cubic-symmetry misunderstanding by researchers. Additionally, the thermodynamic mechanism of phase transition and the thermal stability related to the structure of nanocrystals in glass ceramics have been studied and supported by ab initio calculations and experimental methods. The structure and thermal stability of the nanocrystal and clear environment of the rare-earth ion reported here have far-reaching significance with respect to the optical investigations and further applications of rare-earth doped oxyfluoride glass ceramics.  相似文献   

18.
The late stage growth mechanism for a first order phase transition, either through nucleation growth or spinodal decomposition, is well understood to be an Ostwald ripening or coarsening process, in which larger domains grow at the expense of smaller ones. The growth kinetics in this regime was shown by Lifshitz and Slyozov to follow at(1/3) law. However, the kinetics is altered if there exists a barrier ahead of the growth front, irrespective of the physical origin of the boundary layer. We present an analytic calculation for the growth kinetics in the presence of a boundary layer, showing that in the limit of barrier-dominated growth, the domains grow with at(1/2) law. This result holds true in the dilute regime independent of whether the growing nuclei are spherical or cylindrical.  相似文献   

19.
Fast scanning calorimetry (FSC) was employed to investigate glass softening dynamics in bulk-like and ultrathin glassy water films. Bulk-like water samples were prepared by vapor-deposition on the surface of a tungsten filament near 140 K where vapor-deposition results in low enthalpy glassy water films. The vapor-deposition approach was also used to grow multiple nanoscale (approximately 50 nm thick) water films alternated with benzene and methanoic films of similar dimensions. When heated from cryogenic temperatures, the ultrathin water films underwent a well manifested glass softening transition at temperatures 20 K below the onset of crystallization. However, no such transition was observed in bulk-like samples prior to their crystallization. These results indicate that thin-film water demonstrates glass softening dynamics that are dramatically distinct from those of the bulk phase. We attribute these differences to water's interfacial glass transition, which occurs at temperatures tens of degrees lower than that in the bulk. Implications of these findings for past studies of glass softening dynamics in various glassy water samples are discussed.  相似文献   

20.
Powder precursor gels with composition xZrO2·(100–x)SiO2, with selected values of x=8, 24, 43 and 75 mol%, were processed by sol-gel chemistry. Differential thermal analysis (DTA) was used to study crystallization in (cubic/tetragonal)-ZrO2 during the heating of the reactive amorphous precursors. Kinetic parameters such as activation energy, Avrami's exponent and frequency factor have been simultaneously calculated from the computed DTA data using a previously reported kinetic model. The crystallization temperature decreases relative to the increase in the amount of ZrO2, the value of the kinetic parameter of the crystallization being related to the value of x.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号