首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 15 毫秒
1.
The synthesis of Al–Cr single quasicrystal (QC) nanoparticles of the decagonal phase was achieved by introducing an advanced gas flow evaporation method. By obtaining successive electron diffraction patterns for single-QC nanoparticles, the phase transformation temperature of a single-QC nanoparticle was determined to be 700 °C. It was also determined that part of the QC nanoparticle decomposed into hex-Al8Cr5 and Al during the phase transformation. Since the grain growth did not occur during the phase transformation in the present experiment, the inherent phase transformation temperature could be measured.  相似文献   

2.
The effects of DM interaction on the density-of-states, the dimerization and the phase diagram in the antiferromagnetic Heisenberg chain coupled with quantum phonons have been studied by a nonadiabatic analytical approach. The results show that the effect of the DM interaction is to increase the staggered antisymmetric spin exchange interaction order but to decrease the spin dimerization and their competitions result in the lattice dimerization ordering parameter to increase for large staggered DM interaction parameter β and decrease for small β. A crossover of β exists in which the dimerization ordering parameter changes non-monotonously. As the DM interaction parameter D increases, depending on the appropriate values of spin-phonon coupling, phonon frequency and β, the system undergoes phase transition from spin gapless state to gapped state or reversely and can even reenter between the two states. The relation between the phonon-staggered ordering parameter, the spin-dimer order parameter and the staggered DM interaction order parameter gives clearly their contributing weights to the lattice dimerization.  相似文献   

3.
Abstract

The novel application of vacuum ultra-violet absorption spectroscopy and electron energy loss spectroscopy to helium bubbles in metals is presented. These measurements, carried out on thin aluminium films containing different concentrations of helium and various bubble size distributions, were aimed at determining the density (and thus pressure) of helium in bubbles by observing the shift and broadening of the IS-2P transition in the helium. The data coupled with a theoretical model developed by the authors (see following paper) indicate densities as high as 1023 He cm?3 for specimens containing small bubbles. Data are also presented on the effect that annealing and cooling have on these spectra. The annealing experiments give rise to fairly complex changes in absorption peak structure but with a general shift towards the unperturbed resonance line. The cooling experiment gives rise to a further shift and a narrowing of the absorption spectrum on cooling to 77 K which is tentatively identified as the liquid/solid transition in the helium. Finally, fluorescence spectrum of an Al/He specimen excited with low energy electrons is presented.  相似文献   

4.
Two experimental programs are aiming to study nuclear collisions in the energy regime in order to explore an essential part of the phase diagram of strongly interacting matter. The programs are motivated by observations that indicate a phase transition to take place in this energy domain: the onset of deconfinement. The STAR collaboration proposes an energy scan in the Relativistic Heavy Ion Collider (RHIC) at BNL. The ongoing program of the NA61/SHINE experiment consists of a two-dimensional energy-system size scan in nuclear and elementary collisions. The goal of both programs is to study the properties of the onset of deconfinement and to eventually discover the conjectured critical point of strongly interacting matter. A comparison of the strengths and limitations reveals the complementarity of the two programs.  相似文献   

5.
In this paper we describe the alloying process of ultra-thin Al layers (below 8 × 1015 Al/cm2) deposited on Ni(1 1 1). For this purpose Auger electron spectroscopy, low energy electron diffraction, and ion beam analysis-channelling measurements have been performed in situ in an ultra-high vacuum chamber. Al deposits formed at low temperature (about 130 K) are strained defective crystalline layers retaining the substrate orientation. Alloying takes place, with very progressive Ni enrichment, in a very broad temperature range between 250 K and 570 K. This feature shows that diffusion of the alloy species is more and more difficult when the Ni concentration increases. At 570 K a crystallographically and chemically ordered Ni3Al phase is formed, and its order continuously improves upon annealing, up to 750 K. We have shown by ion beam methods that this alloy is three-dimensional, extending up to 16 (1 1 1) planes for the thickest deposits. The Ni3Al phase can also be obtained directly by Al deposition at 750 K, but its crystalline quality is lower and the layer is probably formed of grains elongated along 〈1 1 −2〉 directions. The Al content of the thin Ni3Al layers formed mostly dissolves in the bulk above 800 K. However a small amount of Al remains segregated at the Ni crystal surface.  相似文献   

6.
This paper describes the second part of a study devoted to the growth of thin Ni-Al alloys after deposition of Al on Ni(1 1 1). In the previous paper [S. Le Pévédic, D. Schmaus, C. Cohen, Surf. Sci. 600 (2006) 565] we have described the results obtained for ultra-thin Al deposits, leading, after annealing at 750 K, to an epitaxial layer of Ni3Al(1 1 1). In the present paper we show that this regime is only observed for Al deposits smaller than 8 × 1015 Al/cm2 and we describe the results obtained for Al deposits exceeding this critical thickness, up to 200 × 1015 Al/cm2. Al deposition was performed at low temperature (around 130 K) and the alloying process was followed in situ during subsequent annealing, by Auger electron spectroscopy, low energy electron diffraction and ion beam analysis-channeling measurements, in an ultra-high vacuum chamber connected to a Van de Graaff accelerator. We evidence the formation, after annealing at 750 K, of a crystallographically and chemically well-ordered NiAl(1 1 0) layer (whose thickness depends on the deposited Al amount), over a Ni3Al “interfacial” layer (whose thickness—about 18 (1 1 1) planes—is independent of the deposited Al amount). The NiAl overlayer is composed of three variants, at 120° from each other in the surface plane, in relation with the respective symmetries of NiAl(1 1 0) and Ni3Al(1 1 1). The NiAl layer is relaxed (the lattice parameters of cc-B2 NiAl and fcc-L12 Ni3Al differ markedly), and we have determined its epitaxial relationship. In the case of the thickest alloyed layer formed the results concerning the structure of the NiAl layer have been confirmed and refined by ex situ X-ray diffraction and information on its grain size has been obtained by ex situ Atomic Force Microscopy. The kinetics of the alloying process is complex. It corresponds to an heterogeneous growth leading, above the thin Ni3Al interfacial layer, to a mixture of Al and NiAl over the whole Al film, up to the surface. The atomic diffusion is very limited in the NiAl phase that forms, and thus the progressive enrichment in Ni of the Al film, i.e. of the mean Ni concentration, becomes slower and slower. As a consequence, alloying is observed to take place in a very broad temperature range between 300 K and 700 K. For annealing temperatures above 800 K, the alloyed layer is decomposed, Al atoms diffusing in the bulk of the substrate.  相似文献   

7.
Growth and decomposition of the Pd5O4 surface oxide on Pd(1 1 1) were studied at sample temperatures between 573 and 683 K and O2 gas pressures between 10−7 and 6 × 10−5 mbar, by means of an effusive O2 beam from a capillary array doser, scanning tunnelling microscopy (STM) and thermal desorption spectrometry (TDS). Exposures beyond the p(2 × 2)O adlayer (saturation coverage 0.25) at 683 K (near thermodynamic equilibrium with respect to Pd5O4 surface oxide formation) lead to incorporation of additional oxygen into the surface. To initiate the incorporation, a critical pressure beyond the thermodynamic stability limit of the surface oxide is required. This thermodynamic stability limit is near 8.9 × 10−6 mbar at 683 K, in good agreement with calculations by density functional theory. A controlled kinetic study was feasible by generating nuclei by only a short O2 pressure pulse and then following further growth kinetics in the lower (10−6 mbar) pressure range.Growth of the surface oxide layer at a lower temperature (573 K) studied by STM is characterized by a high degree of heterogeneity. Among various metastable local structures, a seam of disordered oxide formed at the step edges is a common structural feature characteristic of initial oxide growth. Further oxide nucleation appears to be favoured along the interface between the p(2 × 2)O structure and these disordered seams. Among the intermediate phases one specifically stable phase was detected both during growth and decomposition of the Pd5O4 layer. It is hexagonal with a distance of about 0.62 nm between the protrusions. Its well-ordered form is a superstructure.Isothermal decay of the Pd5O4 oxide layer at 693 K involves at first a rearrangement into the structure, indicating its high-temperature stability. This structure can break up into small clusters of uniform size and leaves a free metal surface area covered by a p(2 × 2)O adlayer. The rate of desorption increases autocatalytically with increasing phase boundary metal-oxide. We propose that at close-to-equilibrium conditions (693 K) surface oxide growth and decay occur via this intermediate structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号