首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
氧原子转移试剂(OTR)Me3NO·2H2O和PhIO可明显地促进异核金属羰基簇合物SRuCO2(CO)9和SeRuCO2(CO)9对1-己烯的配位催化氢化和异构化反应. 催化剂的四面体簇核骨架在催化过程中保持不变. 其反应是一种缔合机理,通过OTR的作用经缔合和解离1分子配位羰基,形成配位不饱和簇核骨架,从而促进其对烯烃的催化氢化和异构化反应. 在甲醇溶液中,SRuCO2(CO)9催化1-乙烯氢化最佳条件为红压5. 0~6. 0MPa,温度60℃,[1-乙烯]/[SRuCO2·(CO)9]为200/1(摩尔比),[Me3NO·2H2O]/[SRuCO2(CO)9]=4~5(摩尔比).  相似文献   

2.
This work presents chemical modeling of solubilities of metal sulfates in aqueous solutions of sulfuric acid at high temperatures. Calculations were compared with experimental solubility measurements of hematite (Fe2O3) in aqueous ternary and quaternary systems of H2SO4, MgSO4 and Al2(SO4)3 at high temperatures. A hybrid model of ion-association and electrolyte non-random two liquid (ENRTL) theory was employed to fit solubility data in three ternary systems H2SO4–MgSO4–H2O, H2SO4–Al2(SO4)3–H2O at 235–270 °C and H2SO4–Fe2(SO4)3–H2O at 150–270 °C. Employing the Aspen Plus™ property program, the electrolyte NRTL local composition model was used for calculating activity coefficients of the ions Al3+, Mg2+ Fe3+ and SO42−, HSO4, OH, H3O+, respectively, as well as molecular species. The solid phases were hydronium alunite (H3O)Al3(SO4)2(OH)6, hematite Fe2O3 and magnesium sulfate monohydrate (MgSO4)·H2O which were employed as constraint precipitation solids in calculating the metal sulfate solubilities. A correlation for the equilibrium constants of the association reactions of complex species versus temperature was implemented. Based on the maximum-likelihood principle, the binary interaction energy parameters for the ionic species as well as the coefficients for equilibrium constants of the reactions were obtained simultaneously using the solubility data of the ternary systems. Following that, the solubilities of metal sulfates in the quaternary systems H2SO4–Fe2(SO4)3–MgSO4–H2O, H2SO4–Fe2(SO4)3–Al2(SO4)3–H2O at 250 °C and H2SO4–Al2(SO4)3–MgSO4–H2O at 230–270 °C were predicted. The calculated results were in excellent agreement with the experimental data.  相似文献   

3.
Two new dinuclear oxo-bridged peroxo complexes of tungsten with coordinated dipeptides of the type, Na2[W2O3(O2)4(glycyl-glycine)2] · 3H2O (1) and Na2[W2O3(O2)4(glycyl-leucine)2] · 3H2O (2) have been synthesized from the reaction of H2WO4, 30% H2O2 and the respective dipeptide at pH ca. 2.5. Synthesis of the compounds, in addition to pH, is sensitive to reaction temperature and concentrations of the components. The compounds were characterized by elemental analysis, spectral and physico-chemical methods including thermal analysis. In the dimeric complexes the two W(VI) centres with edge bound peroxo groups are bridged by an oxo group. The dipeptides occurring as zwitterions bind the metal centers through O (carboxylate) atoms leading to hepta co-ordination around each W(VI). Thermal stability of the compounds as well as their stability in solution were determined. The compounds are highly stable toward decomposition in solutions of acidic as well as physiological pH. These compounds, besides another similar dimeric compound Na2[W2O3(O2)4(cystine)] · 4H2O (3) efficiently oxidized bromide to a bromination competent intermediate in phosphate buffer at physiological pH, a reaction in which only two of the peroxide groups of the complex species were found to be active. The complexes could also mediate bromination of organic substrate in aqueous-organic media.  相似文献   

4.
We reported here four structures of lanthanide–amino acid complexes obtained under near physiological pH conditions and their individual formula can be described as [Tb2(dl-Cys)4(H2O)8]Cl2 (1), [Eu43-OH)4(l-Asp)2(l-HAsp)3(H2O)7] Cl · 11.5H2O (2), [Eu8(l-HVal)16(H2O)32]Cl24 · 12.5H2O (3), and [Tb2(dl-HVal)4(H2O)8]Cl6 · 2H2O (4). These complexes showed diverse structures and have shown potential application in DNA detection. We studied the interactions of the complexes with five single-stranded DNA and found different fluorescence enhancement, binding affinity and binding stoichiometry when the complexes are bound to DNA.  相似文献   

5.
A new family of heteropolytungstate complexes (NH4)21[Ln(H2O)5{Ni(H2O)}2As4W40O140xH2O(Ln=Y, Ce, Pr, Nd, Sm, Eu, Gd) were prepared by the reaction of Na27[NaAs4W40O140]·60H2O with NiCl2·6H2O and Ln(NO3)3·xH2O at pH≈4.5. The crystal structures of (NH4)21[Gd(H2O)5{Ni(H2O)}2As4W40O140]·51H2O was determined by X-ray diffraction analysis and element analysis. The compound crystallizes in the monoclinic space group P21/n with a=19.754(3), b=24.298(4), c=39.350(6) Å, β=100.612(3)°, V=18564(5) Å3, Z=2, R1(wR2)=0.0544(0.0691). The central site S1 and two opposite sites S2 of the big cyclic ligand [As4W40O140]28− are occupied by one Ln3+and two Ni2+, respectively, each site supply four Od coordinating to metal ion, another one water molecule and other five water molecules coordinate, respectively, to Ni2+and Ln3+. Polyanion [Ln(H2O)5{Ni(H2O)}2As4W40O140]21− has C2v symmetry. IR and UV–vis spectra of [NaAs4W40O140]27− of the title compounds are discussed.  相似文献   

6.
Six mononuclear complexes [M(L1)2(H2O)4] (M = Co(II), 1a and M = Mn(II), 1b), [Cu(L1)2(H2O)2] (1c), [Cu(L1)2(H2O)(Py)2] (1d), [Cu(L3)(H2O)Cl] · H2O (3a) and [Co(Sal)(H2O)(Py)3] · 2ClO4 · H2O (3b) of phenoxyacetic acid derivatives and Schiff base were determined by single crystal X-ray diffraction. The Co(II) (1a) and Mn(II) (1b) complexes are isomorphous. X-ray crystal structural analyses reveal that these coordination complexes form polymeric structure via formation of different types of hydrogen bonding and π-stacking interactions in solid. Thermal analysis along with the powder X-ray diffraction data of these complexes shows the importance of the coordinated and/or crystal water molecules in stabilizing the MOF structure. Complexes 1a, 1c, 3a show marginal catalytic activity in the oxidation of olefins to epoxides in the presence of i-butyraldehyde and molecular oxygen.  相似文献   

7.
Thermal decomposition of mixed ligand thymine (2,4-dihydroxy-5-methylpyrimidine) complexes of divalent Ni(II) with aspartate, glutamate and ADA (N-2-acetamido)iminodiacetate dianions was monitored by TG, DTG and DTA analysis in static atmosphere of air. The decomposition course and steps of complexes [Ni(C5H6N2O2)(C4H5NO4)2−(H2O)2]·H2O, [Ni(C5H6N2O2)(C5H7NO4)2−(H2O)2]·H2O and [Ni(C5H6N2O2)(C6H8N2O5)2−(H2O)2]·1.5H2O were analyzed. The final decomposition products are found to be the corresponding metal oxides. The kinetic parameters namely, activation energy (E*), enthalpy (ΔH*), entropy (ΔS*) and free energy change of decomposition (ΔG*) are calculated from the TG curves using Coats–Redfern and Horowitz–Metzger equations. The stability order found for these complexes follows the trend aspartate > ADA > glutamate.  相似文献   

8.
Hydrogen production by steam reforming of methane using catalytic membrane reactors was investigated first by simulation, then by experimentation. The membrane reactor simulation, using an isothermal and plug-flow model with selective permeation from reactant stream to permeate stream, was conducted to evaluate the effect of permselectivity on membrane reactor performance – such as methane conversion and hydrogen yield – at pressures as high as 1000 kPa. The simulation study, with a target for methane conversion of 0.8, showed that hydrogen yield and production rate have approximately the same dependency on operating conditions, such as reaction pressure, if the permeance ratio of hydrogen over nitrogen ((H2/N2)) is larger than 100 and of H2 over H2O is larger than 15. Catalytic membrane reactors, consisting of a microporous Ni-doped SiO2 top layer and a catalytic support, were prepared and applied experimentally for steam reforming of methane at 500 °C. A bimodal catalytic support, which allows large diffusivity and high dispersion of the metal catalyst, was prepared for the enhancement of membrane catalytic activity. Catalytic membranes having H2 permeances in the range of 2–5 × 10−6 m3 m−2 s−1 kPa−1, with H2/N2 of 25–500 and H2/H2O of 6–15, were examined for steam reforming of methane. Increased performance for the production of hydrogen was experimentally obtained with an increase in reaction-side pressure (as high as 500 kPa), which agreed with the theoretical simulation with no fitting parameters.  相似文献   

9.
The pseudo-boehmite derived alumina supported metal(Cu,Co and Ni) catalysts prepared by the impregnation method were investigated in hydrogenation of maleic anhydride(MA) to succinic anhydride(SA) and γ-butyrolactone.The catalysts were characterized by ICP-AES,N_2 adsorptiondesorption,XRD,H_2-TPR,CO-TPD,dissociative N_2O adsorption and TEM and the results showed that the alumina possessed mesoporous feature and the metal species were well dispersed on the support.Compared to Cu/Al_2O_3 and Co/Al_2O_3,Ni/Al_2O_3 exhibited higher catalytic activity in the MA hydrogenation with 92%selectivity to SA and nearly 100%conversion of MA at 140 °C under 0.5 MPa of H_2 with a weighted hourly space velocity of 2 h ~1(MA).The stability of Ni/Al_2O_3 catalyst was also investigated.  相似文献   

10.
The compound [Zn(H2O)4]2[H2As6V15O42(H2O)]·2H2O (1) has been synthesized and characterized by elemental analysis, IR, ESR, magnetic measurement, third-order nonlinear property study and single crystal X-ray diffraction analysis. The compound 1 crystallizes in trigonal space group R3, a=b=12.0601(17) Å, c=33.970(7) Å, γ=120°, V=4278.8(12) Å3, Z=3 and R1(wR2)=0.0512 (0.1171). The crystal structure is constructed from [H2As6V15O42(H2O)]4− anions and [Zn(H2O)4]2+ cations linked through hydrogen bonds into a network. The [H2As6V15O42(H2O)]6− cluster consists of 15 VO5 square pyramids linked by three As2O5 handle-like units.  相似文献   

11.
Nanoparticles of precious metals play an important role in many heterogeneous catalytic reactions due to their excellent catalytic performance. As an idealized model, gas phase metal clusters have been extensively utilized to understand catalytic mechanisms at a molecular level. Here we provide an overview of our recent studies on H2 dissociative chemisorption on nickel family clusters. The structure evolution and the stability of the metal clusters were first compared. H2 dissociation on the clusters was then carefully addressed to understand the capability of metal clusters to break the H-H bond. Two key parameters, the dissociative chemisorption energy (ΔECE) and the H sequential desorption energy (ΔEDE), were employed to characterize the catalytic activity of metal clusters. Our results show that both ΔECE and ΔEDE decline significantly as the H coverage increases. Since the catalyst is in general covered entirely by H atoms and H2 molecules in a typical hydrogenation process, and maintained at a pre-determined pressure of H2 gas, we can rationally use the calculated ΔECE and ΔEDE values at full H saturation to address the activity of metal clusters. Our results suggest that at full H coverage, each Pt atom is essentially capable of adsorbing 4 H atoms, while each Ni or Pd atom can only accommodate 2 H atoms. Considering the similar values of H desorption energies on Pt and Pd clusters, the higher average H capacity per Pt atom could probably lead to a faster reaction rate because more active H atoms are produced on the Pt catalyst particles in the hydrogenation process. Finally, the charge sensitivity of the key catalytic properties of Pt clusters for hydrogenation was systematically evaluated. The results show that the dissociation of H2 and H desorption are strongly correlated to the charge state of the Pt clusters at low H coverage. However, at high H-capacities, both ΔECE and ΔEDE fall into a narrow range, suggesting that the charge can be readily dispersed and that the Pt-H bonds average the interaction between clusters and H atoms. As a result, the H-capacities on charged clusters were found to be similar as the cluster size increased; in case of sufficiently large clusters, the reactivity of a fully saturated cluster was no longer sensitive to its charge state.  相似文献   

12.
The use of the water soluble ruthenium clusters Ru3(CO)12−x(TPPTN)x (x=1 1, 2 2 or 3 3) and H4Ru4(CO)11(TPPTN) 4 (TPPTN=P{m-C6H4SO3Na)3) as catalyst precursors in the hydrogenation of non-activated alkenes under biphasic conditions is described. Each cluster displays activity under moderate conditions, ca. 60 atm. H2 at 60°C, with catalytic turnovers up to ca. 500. The trinuclear clusters undergo transformation during reaction but can be reused repeatedly without loss of activity. Other methodologies such as ionic liquid–organic and the use of silica supports have been attempted with these clusters but they are less effective than the aqueous–organic regime.  相似文献   

13.
Simultaneous NO reduction and CO oxidation in the presence of O2, H2O and SO2 over Cu/Mg/Al/O (Cu-cat), Ce/Mg/Al/O (Ce-cat) and Cu/Ce/Mg/Al/O (CuCe-cat) were studied. At low temperatures (<340 °C), the presence of O2 or H2O enhanced the activity of CuCe-cat for NO and CO conversions, but significantly suppressed the activity of Cu-cat and Ce-cat. At high temperature (720 °C), the presence of O2 or H2O had no adverse effect on the NO and CO conversions over these catalysts. The addition of SO2 to NO+CO+O2+H2O system had no effect on the reaction of CO+O2 over Cu-cat, but deactivated this catalyst for NO+CO and CO+H2O reactions; over Ce-cat, all of these reactions of NO+CO,CO+O2 and CO+H2O were suppressed significantly; over CuCe-cat, NO+CO and CO+O2 reactions were not affected while the reaction of CO+H2O was slightly inhibited.  相似文献   

14.
Two homochiral metal amino-carboxylate–phosphonate hybrids, namely, [Co2Cl(S-HL)(H2O)5]Cl · H2O 1 and Sr2(S-HL)(NO3)2(H2O) · H2O 2 (S-H3L = S-HO2CC4H7NCH2PO3H2) have been synthesized by the reaction of the enantiopure S-H3L ligand with cobalt(II) chloride or strontium nitrate under acidic condition at room temperature. The structure of compound 1 features a novel 3D framework with helical chains and channels. Compound 2 has a layered structure in which the 1D chains of edge-sharing SrO8 and SrO9 polyhedra are interconnected by phosphonate ligands.  相似文献   

15.
With the help of the quasi isothermal-quasi isobaric technique, completed with DTA and thermomicroscopic examinations, several new observations have been made regarding the dehydration process of MgSO4 · 7 H2O. It was found that under given conditions the material, first at 50°C and then at 95°C, melts in an incongruous way. In the course of the latter transformation, a ternary system consisting of solid MgSO4 · 3 H2O, a solution phase saturated with respect to the trihydrate, and a water vapour phase, is formed. The saturated solution reaches its boiling point at 105°C. Without any temperature change, the system loses four moles of water and solid MgSO4 · 3 H2O remains. This decomposes at 115°C and a mixture consisting of MgSO4 · H2O and MgSO4 · 2 H2O forms, the proportion of which depends on the experimental conditions. At 150°C, the latter compound loses one mole of water. The MgSO4 · H2O maintains constant weight up to 310°C, above which temperature the remaining water of crystallization is removed.  相似文献   

16.
Three interpenetrated polymeric networks, {[Co(bpp)(OH-BDC)] · H2O}n (1) [Ni(bpp)1.5(H2O)(OH-BDC)]n (2) and {[Cd(bpp)(H2O)(OH-BDC)] · 2H2O}n (3), have been prepared by hydrothermal reactions of 1,3-bis(4-pyridyl)propane (bpp), 5-hydroxyisophthalic acid (OH-H2BDC), with Co(NO3)2 · 6H2O, Ni(NO3)2 · 6H2O and Cd(NO3)2 · 4H2O, respectively. Single-crystal X-ray diffraction analyses reveal that the three compounds all exhibit interpenetrated but entirely different structures. Compound 1 is a fourfold interpenetrated adamantanoid structure with water molecules as space fillers, in which bpp adopts a TG conformation (T = trans, G = gauche). Compound 2 is an interdigitated structure from the interpenetrated long arms of one-dimensional molecular ladders, while bpp in 2 adopts both TT and TG conformations. Compound 3 is a twofold interpenetrated three-dimensional network from a one-dimensional metal-carboxylate chain bridged by TG conformational bpp. The hydrogen bonding interactions in 1–3 further stabilize the whole structural frameworks and play critical roles in their constructions.  相似文献   

17.
G. Favero  U. Russo  M. Vidali  B. Zarli 《Polyhedron》1988,7(24):2703-2707
With the binucleating ligand 1-oxy-2,6-di [(N,N-biscarboxymethyl)aminomethyl]- 4-chlorobenzol (H5L) complexes of formulae FeH2L · 2H2O; FeH3L(C1O4) · H2O; Fe2L(OH) · 2H2O; M2HL · nH2O (M = Co, Cu, n = 2; M = Ni, n = 4); FeCuL · 3H2O; FeCrL(OH) · 3H2O were prepared and characterized by elemental analysis, IR and electronic spectra and magnetic moment determinations. In addition, thermal analysis data of the complexes and Mössbauer effect spectra of the iron containing complexes are also given and discussed.  相似文献   

18.
The relative stabilities of thiourea in water are investigated computationally by considering thiourea–water complexes containing up to 1–6 water molecules (CS(NH2)2(H2O)n=1–6) using density functional theory and MP2 ab initio molecular orbital theory. The results show that the thiourea complex is stable and has an unusually high affinity for incoming water molecules. The clusters are progressively stabilized by the addition of water molecules, as indicated by the increasing of the binding energy. The binding energy of the cluster to each H2O molecule is about 33 kJ mol−1 for n=1–5.The C–S bond, N–C bond distance, Mulliken populations and binding energy keep approximately constant as the clusters increase in size with an increasing number of H2O molecules. As the solvation progresses, the C–S distance increases monotonically while the Mulliken populations on the C–S bond reduces monotonically with the addition of each H2O molecule, indicating that the C–S bond of the thiourea unit in the clusters is de-stabilized with an increasing number of H2O molecules. Charge transfers for the clusters are mainly found at N, S atoms of the thiourea.  相似文献   

19.
From reactions between different Cu(II) salts and the Schiff base 6-amino-5-formyl-1,3-dimethyluracil-benzoylhydrazone (H2BEZDO) in alcohol, six new copper complexes with simplified formulas [Cu(HBEZDO)(H2O)(MeOH)]NO3 (1), [CuCl(HBEZDO)(DMF)] (2), [CuBr(HBEZDO)]·2H2O (3), CuBr(HBEZDO) (4), Cu(ClO4)(HBEZDO)·H2O (5), and Cu(SO4)1/2(HBEZDO)·1 H2O (6) were isolated. The structures of compounds 1, 2 and 3 have been established by means of XRD diffraction methods. In the three compounds, the Schiff base acts as a tridentate monodeprotonated ligand through the N(6), N(51) and O(52) atoms, making two five- and six-membered chelate rings. In the structure of 1 and 2, the solvent molecules are coordinated giving square-based pyramidal environments, with the basal plane completed by a MeOH (1) or Cl (2) and the apical positions occupied by the oxygen atom of a water (1) or a DMF molecule (2). The molecular unit of the complex [CuBr(HBEZDO)]·2H2O (3) is defined by a square-plane containing the three donor atoms of the organic ligand and a bromide ligand (Cu–Br 2.384 Å), but there is a stronger tetragonally elongated pyramidal geometry around the metal, the apical position of the polyhedron being occupied by a weakly bound-to-copper bromine atom (3.086 Å) of a neighbouring molecule. This fact gives the appearance of an apparent dimer with very asymmetric bromine bridges, in which there are no exchange interactions between metal centres. Also, infrared, magnetic and EPR data of the isolated complexes are reported.  相似文献   

20.
The X-ray crystallographic studies are reported for the water-soluble trivalent lanthanide complexes of the macrocyclic p-sulfonatothiacalix[4]arene [Gd(H2O)6((CH3)2SO)(p-sulfonatothiacalix[4]arene)]·H3O+·5H2O (1) and Na[Nd(H2O)6((CH3)2SO)(p-sulfonatothiacalix[4]arene)]·3H2O (2). The complexes are isostructural and belong to monoclinic system, C2/m space group. The Ln3+ metal ion is coordinated by the thiacalixarene ligand via the sulfonato group, and also ligated by an oxygen atom of a dimethyl sulfoxide (DMSO) molecule that occupies the cavity of the thiacalixarene and six aqua ligands. The thiacalixarenes are linked by the coordinated water molecules through hydrogen bonding to form a 2D polymer. The p-sulfonatothiacalixarenes maintain the clay-like bi-layer structure in the coordination network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号