首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The interactions and structures of the urea-water system are studied by an all-atom molecular dynamics (MD) simulation. The hydrogen-bonding network and the radial distribution functions are adopted in MD simulations. The structures of urea-water mixtures can be classified into different regions from the analysis of the hydrogen-bonding network. The urea molecule shows the certain tendency to the self-aggregate with the mole fraction of urea increasing. Moreover, the results of the MD simulations are also compare with the chemical shifts and viscosities of the urea aqueous solutions, and the statistical results of the average number hydrogen bonds in the MD simulations are in agreement with the experiment data such as chemical shifts of the hydrogen atom and viscosity.  相似文献   

2.
N,N-dimethylacetamide (DMA) has been investigated extensively in studying models of peptide bonds. An all-atom MD simulation and the NMR spectra were performed to investigate the interactions in the DMA-water system. The radial distribution functions (RDFs) and the hydrogen-bonding network were used in MD simulations. There are strong hydrogen bonds and weak C-H¢ ¢ ¢O contacts in the mixtures, as shown by the analysis of the RDFs. The insight structures in the DMA-water mixtures can be classified into different regions by the analysis of the hydrogen-bonding network. Chemical shifts of the hydrogen atom of water molecule with concentration and temperatures are adopted to study the interactions in the mixtures. The results of NMR spectra show good agreement with the statistical results of hydrogen bonds in MD simulations.  相似文献   

3.
The structure of [Co2(μ‐OH)2(μ‐OAc)(OAc)2(dipyam)2]AcO · EtOH ( 1 ) has been determined by single‐crystal X‐ray analysis. The cationic complex may be described as a “di(μ‐hydroxo)(μ‐acetato)dicobalt(III)” core with chelating 2, 2′‐dipyridylamine and monodentate acetate ligands. The coordination polyhedron around each cobalt atom is a distorted octahedral. The dimers are linked in the crystal by N‐H···Oionic AcO and C‐H···Omonodentate AcO hydrogen bonds. Spectroscopic data are also presented.  相似文献   

4.
Reactions of Hpymtza [Hpymtza = 5‐(2‐pyrimidyl)tetrazole‐1‐acetic acid] with MnCl2 · 4H2O under different pH conditions, afforded the complexes [Mn(pymtza)2(H2O)4] ( 1 ) and [Mn2(pymtza)2Cl2(EtOH)] · H2O ( 2 ). The compounds were structurally characterized by elemental analysis, IR spectroscopy and single‐crystal X‐ray diffraction. Compound 1 shows a mononuclear structure, whereas complex 2 has a 1D chain structure. In compound 1 , the pymtza ligand only acts in a monodentate manner to coordinate to one central MnII atom by one carboxylate atom, In 2 , pymtza acts as tetradentate ligand to connect three MnII ions. Compounds 1 and 2 display 3D networks by hydrogen bonding interactions. Furthermore, the luminescence properties of Hpymtza as well as compounds 1 and 2 were investigated at room temperature in the solid state.  相似文献   

5.
The energies, geometries and harmonic vibrational frequencies of 1:1 5‐hydroxytryptamine‐water (5‐HT‐H2O) complexes are studied at the MP2/6‐311++G(d,p) level. Natural bond orbital (NBO), quantum theory of atoms in molecules (QTAIM) analyses and the localized molecular orbital energy decomposition analysis (LMO‐EDA) were performed to explore the nature of the hydrogen‐bonding interactions in these complexes. Various types of hydrogen bonds (H‐bonds) are formed in these 5‐HT‐H2O complexes. The intermolecular C4H55‐HT···Ow H‐bond in HTW3 is strengthened due to the cooperativity, whereas no such cooperativity is found in the other 5‐HT‐H2O complexes. H‐bond in which nitrogen atom of amino in 5‐HT acted as proton donors was stronger than other H‐bonds. Our researches show that the hydrogen bonding interaction plays a vital role on the relative stabilities of 5‐HT‐H2O complexes.  相似文献   

6.
All-atom molecular dynamics (MD) simulation and the NMR spectra are used to investi-gate the interactions in N-glycylglycine aqueous solution. Different types of atoms exhibit different capability in forming hydrogen bonds by the radial distribution function analysis. Some typical dominant aggregates are found in different types of hydrogen bonds by the statistical hydrogen-bonding network. Moreover, temperature-dependent NMR are used to compare with the results of the MD simulations. The chemical shifts of the three hydrogen atoms all decrease with the temperature increasing which reveals that the hydrogen bonds are dominant in the glycylglycine aqueous solution. And the NMR results show agreement with the MD simulations. All-atom MD simulations and NMR spectra are successful in revealing the structures and interactions in the N-glycylglycine-water mixtures.  相似文献   

7.
An all-atom dimethyl sulfoxide (DMSO) and water model have been used for molecular dy-namics simulation. The NMR and IR spectra are also performed to study the structures and interactions in the DMSO-water system. And there are traditional strong hydrogen bondsand weak C—H…O contacts existing in the mixtures according to the analysis of the radial distribution functions. The insight structures in the DMSO-water mixtures can be classified into different regions by the analysis of the hydrogen-bonding network. Interestingly, the molar fraction of DMSO 0.35 is found to be a special concentration by the network. It is the transitional region which is from the water rich region to the DMSO rich region. The sta-ble aggregates of (DMSO)m·S=O…HW—OW·(H2O)n might play a key role in this region.Moreover, the simulation is compared with the chemical shifts in NMR and wavenumbers in IR with concentration dependence. And the statistical results of the average number hydrogen bonds in the MD simulations are in agreement with the experiment data in NMR and IR spectra.  相似文献   

8.
The complexes of XH2NH2···HNO(X = B, Al, Ga) are characterized as head to tail with hydrogen bonding interactions. The structural characteristics can be confirmed by atoms in molecules (AIM) analysis, which also provide comparisons of hydrogen bonds strengths. The calculated interaction energies at G2MP2 level show that stability of complexes decrease as BH2NH2···HNO > AlH2NH2···HNO > GaH2NH2···HNO. On the basis of the vibrational frequencies calculations, there are red‐shifts for ν(X1? H) and blue‐shifts for ν(N? H) in the complexes on dihydrogen bonding formations (X1? H···H? N). On hydrogen bonding formations (N? H···O), there are red‐shifts for ν(N? H) compared to the monomers. Natural bond orbital (NBO) analysis is used to discuss the reasons for the ν(X1? H) and ν(N? H) stretching vibrational shifts by hyperconjugation, electron density redistribution, and rehybridization. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

9.
The structures of ammonium 3,5‐dinitrobenzoate, NH4+·C7H3N2O6, (I), ammonium 4‐nitrobenzoate dihydrate, NH4+·C7H4NO4·2H2O, (II), and ammonium 2,4‐dichlorobenzoate hemihydrate, NH4+·C7H3Cl2O2·0.5H2O, (III), have been determined and their hydrogen‐bonded structures are described. All three salts form hydrogen‐bonded polymeric structures, viz. three‐dimensional in (I) and two‐dimensional in (II) and (III). With (I), a primary cation–anion cyclic association is formed [graph set R43(10)] through N—H...O hydrogen bonds, involving a carboxylate group with both O atoms contributing to the hydrogen bonds (denoted O,O′‐carboxylate) on one side and a carboxylate group with one O atom involved in two hydrogen bonds (denoted O‐carboxylate) on the other. Structure extension involves N—H...O hydrogen bonds to both carboxylate and nitro O‐atom acceptors. With structure (II), the primary inter‐species interactions and structure extension into layers lying parallel to (001) are through conjoined cyclic hydrogen‐bonding motifs, viz.R43(10) (one cation, an O,O′‐carboxylate group and two water molecules) and centrosymmetric R42(8) (two cations and two water molecules). The structure of (III) also has conjoined R43(10) and centrosymmetric R42(8) motifs in the layered structure but these differ in that the first motif involves one cation, an O,O′‐carboxylate group, an O‐carboxylate group and one water molecule, and the second motif involves two cations and two O‐carboxylate groups. The layers lie parallel to (100). The structures of salt hydrates (II) and (III), displaying two‐dimensional layered arrays through conjoined hydrogen‐bonded nets, provide further illustration of a previously indicated trend among ammonium salts of carboxylic acids, but the anhydrous three‐dimensional structure of (I) is inconsistent with that trend.  相似文献   

10.
Hydrogen bonding interactions between amino acids and nucleic acid bases constitute the most important interactions responsible for the specificity of protein binding. In this study, complexes formed by hydrogen bonding interactions between cysteine and thymine have been studied by density functional theory. The relevant geometries, energies, and IR characteristics of hydrogen bonds (H‐bonds) have been systematically investigated. The quantum theory of atoms in molecule and natural bond orbital analysis have also been applied to understand the nature of the hydrogen bonding interactions in complexes. More than 10 kinds of H‐bonds including intra‐ and intermolecular H‐bonds have been found in complexes. Most of intermolecular H‐bonds involve O (or N) atom as H‐acceptor, whereas the H‐bonds involving C or S atom usually are weaker than other ones. Both the strength of H‐bonds and the structural deformation are responsible for the stability of complexes. Because of the serious deformation, the complex involving the strongest H‐bond is not the most stable structures. Relationships between H‐bond length (ΔRX‐H), frequency shifts (Δv), and the electron density (ρb) and its Laplace (?2ρb) at bond critical points have also been investigated. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

11.
合成了两个新的配合物CuLCl2•2EtOH(1) 和CoLCl2 (2) [L是( S , S )-1,2-二N-甲基苯并咪唑-1,2-二甲氧基-乙烷],并通过单晶X衍射确定它们的结构。配合物1中,L作为三齿[N, N, O]配体,而配合物2 中,L作为二齿[N, N]配体。这两个配合物共同的结构特点都是通过分子内氢键形成2维的格子结构,然后通过分子间的C-H···Cl型氢键和π–π堆积作用形成3维结构。  相似文献   

12.
特殊缔合体系TFE水溶液分子动力学模拟   总被引:2,自引:0,他引:2  
三氟乙醇(TFE)水溶液是一类特殊的缔合体系. 采用分子动力学模拟方法结合核磁共振化学位移研究了TFE水溶液体系全浓度范围的氢键网络, 并对动力学模拟结果和核磁共振化学位移进行了比较. 从径向分布函数(RDF)发现, TFE水溶液中存在着强氢键, 而体系中的C—H…O弱相互作用较为明显, 也不能忽略. 氢键网络分析发现TFE 水溶液体系的氢键大致分为以下三个区域: 在水富集区域, 水分子倾向于自身缔合形成稳定的簇结构, 随着TFE 浓度的增加, 水的有序结构受到破坏, 水分子和TFE分子发生交叉缔合作用形成氢键; 在TFE富集区域, 水分子较少, TFE分子自身通过氢键形成多缔体结构. 此外, 分子动力学统计的平均氢键数的变化和文献报导的核磁共振化学位移变化趋势相同, 实验和理论的结果吻合较好.  相似文献   

13.
Series of typical π‐type and pseudo‐π‐type halogen‐bonded complexes B ··· ClY and B ··· BrY and hydrogen‐bonded complex B ··· HY (B = C2H4, C2H2, and C3H6; Y = F, Cl, and Br) have been investigated using the MP2/aug‐cc‐pVDZ method. A striking parallelism was found in the geometries, vibrational frequencies, binding energies, and topological properties between B ··· XY and B ··· HY (X = Cl and Br). It has been found that the lengths of the weak bond d(X ··· π)/d(H ··· π), the frequencies of the weak bond ν(X ··· π)/ν(H ··· π), the frequency shifts Δν(X? Y)/Δν(H? Y), the electron densities at the bond critical point of the weak bonds ρc(X ··· π)/ρc(H ··· π), and the electron density changes Δρc(X? Y)/Δρc(H? Y) could be used as measures of the strengths of typical π‐type and pseudo‐π‐type halogen/hydrogen bonds. The typical π‐type and pseudo‐π‐type halogen bond and hydrogen bond are noncovalent interactions. For the same Y, the halogen bond strengths are in the order B ··· ClY < B ··· BrY. For the same X, the halogen bond strength decreases according to the sequence F > Cl > Br that is in agreement with the hydrogen bond strengths B ··· HF > B ··· HCl > B ··· HBr. All of these typical π‐type and pseudo‐π‐type hydrogen‐bonded and halogen‐bonded complexes have the “conflict‐type” structure. Contour maps of the Laplacian of π electron density indicate that the formation of B ··· XY halogen‐bonded complex and B ··· HY hydrogen‐bonded complex is very similar. Charge transfer is observed from B to XY/HY and both the dipolar polarization and the volume of the halogen atom or hydrogen atom decrease on B ··· XY/B ··· HY complex formation. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

14.
The structures of the 1:1 hydrated proton‐transfer compounds of isonipecotamide (piperidine‐4‐carboxamide) with oxalic acid, 4‐carbamoylpiperidinium hydrogen oxalate dihydrate, C6H13N2O+·C2HO4·2H2O, (I), and with adipic acid, bis(4‐carbamoylpiperidinium) adipate dihydrate, 2C6H13N2O+·C6H8O42−·2H2O, (II), are three‐dimensional hydrogen‐bonded constructs involving several different types of enlarged water‐bridged cyclic associations. In the structure of (I), the oxalate monoanions give head‐to‐tail carboxylic acid O—H...Ocarboxyl hydrogen‐bonding interactions, forming C(5) chain substructures which extend along a. The isonipecotamide cations also give parallel chain substructures through amide N—H...O hydrogen bonds, the chains being linked across b and down c by alternating water bridges involving both carboxyl and amide O‐atom acceptors and amide and piperidinium N—H...Ocarboxyl hydrogen bonds, generating cyclic R43(10) and R32(11) motifs. In the structure of (II), the asymmetric unit comprises a piperidinium cation, half an adipate dianion, which lies across a crystallographic inversion centre, and a solvent water molecule. In the crystal structure, the two inversion‐related cations are interlinked through the two water molecules, which act as acceptors in dual amide N—H...Owater hydrogen bonds, to give a cyclic R42(8) association which is conjoined with an R44(12) motif. Further N—H...Owater, water O—H...Oamide and piperidinium N—H...Ocarboxyl hydrogen bonds give the overall three‐dimensional structure. The structures reported here further demonstrate the utility of the isonipecotamide cation as a synthon for the generation of stable hydrogen‐bonded structures. The presence of solvent water molecules in these structures is largely responsible for the non‐occurrence of the common hydrogen‐bonded amide–amide dimer, promoting instead various expanded cyclic hydrogen‐bonding motifs.  相似文献   

15.
All-atom molecular dynamics (MD) simulations and chemical shifts were used to study interactions and structures in the glycine-water system. Radial distribution functions and the hydrogen-bond network were applied in MD simulations. Aggregates in the aqueous glycine solution could be classified into different regions by analysis of the hydrogen-bonding network. Temperature-dependent NMR spectra and the viscosity of glycine in aqueous solutions were measured to compare with the results of MD simulations. The variation tendencies of the hydrogen atom chemical shifts and viscosity with concentration of glycine agree with the statistical results of hydrogen bonds in the MD simulations.  相似文献   

16.
A fixed hydrogen‐bonding motif with a high probability of occurring when appropriate functional groups are involved is described as a `supramolecular hydrogen‐bonding synthon'. The identification of these synthons may enable the prediction of accurate crystal structures. The rare chiral hydrogen‐bonding motif R53(10) was observed previously in a cocrystal of 2,4,6‐trichlorophenol, 2,4‐dichlorophenol and dicyclohexylamine. In the title solvated salt, 2C4H12N+·C6H3Cl2O·(C6H3Cl2O·C6H4Cl2O)·2C4H8O, five components, namely two tert‐butylammonium cations, one 2,4‐dichlorophenol molecule, one 2,4‐dichlorophenolate anion and one 2,6‐dichlorophenolate anion, are bound by N—H…O and O—H…O hydrogen bonds to form a hydrogen‐bonded ring, with the graph‐set motif R53(10), which is further associated with two pendant tetrahydrofuran molecules by N—H…O hydrogen bonds. The hydrogen‐bonded ring has internal symmetry, with a twofold axis running through the centre of the 2,6‐dichlorophenolate anion, and is isostructural with a previous and related structure formed from 2,4‐dichlorophenol, dicyclohexylamine and 2,4,6‐trichlorophenol. In the title crystal, helical columns are built by the alignment and twisting of the chiral hydrogen‐bonded rings, along and across the c axis, and successive pairs of rings are associated with each other through C—H…π interactions. Neighbouring helical columns are inversely related and, therefore, no chirality is sustained, in contrast to the previous case.  相似文献   

17.
Molecular dynamics simulation of the Michaelis complex, phospho‐enzyme intermediate, and the wild‐type and C12S mutant have been carried out to examine hydrogen‐bonding interactions in the active site of the bovine low molecular weight protein‐tyrosine phosphatase (BPTP). It was found that the Sγ atom of the nucleophilic residue Cys‐12 is ideally located at a position opposite from the phenylphosphate dianion for an inline nucleophilic substitution reaction. In addition, electrostatic and hydrogen‐bonding interactions from the backbone amide groups of the phosphate‐binding loop strongly stabilize the thiolate anion, making Cys‐12 ionized in the active site. In the phospho‐enzyme intermediate, three water molecules are found to form strong hydrogen bonds with the phosphate group. In addition, another water molecule can be identified to form bridging hydrogen bonds between the phosphate group and Asp‐129, which may act as the nucleophile in the subsequent phosphate hydrolysis reaction, with Asp‐129 serving as a general base. The structural difference at the active site between the wild‐type and C12S mutant has been examined. It was found that the alkoxide anion is significantly shifted toward one side of the phosphate binding loop, away from the optimal position enjoyed by the thiolate anion of the wild‐type enzyme in an SN2 process. This, coupled with the high pKa value of an alcoholic residue, makes the C12S mutant catalytically inactive. These molecular dynamics simulations provided details of hydrogen bonding interactions in the active site of BPTP, and a structural basis for further studies using combined quantum mechanical and molecular mechanical potential to model the entire dephosphorylation reaction by BPTP. © 2000 John Wiley & Sons, Inc. J Comput Chem 21: 1192–1203, 2000  相似文献   

18.
The time‐dependent density functional theory (TDDFT) method has been carried out to investigate the excited‐state hydrogen‐bonding dynamics of 4‐aminophthalimide (4AP) in hydrogen‐donating water solvent. The infrared spectra of the hydrogen‐bonded solute?solvent complexes in electronically excited state have been calculated using the TDDFT method. We have demonstrated that the intermolecular hydrogen bond C? O···H? O and N? H···O? H in the hydrogen‐bonded 4AP?(H2O)2 trimer are significantly strengthened in the electronically excited state by theoretically monitoring the changes of the bond lengths of hydrogen bonds and hydrogen‐bonding groups in different electronic states. The hydrogen bonds strengthening in the electronically excited state are confirmed because the calculated stretching vibrational modes of the hydrogen bonding C?O, amino N? H, and H? O groups are markedly red‐shifted upon photoexcitation. The calculated results are consistent with the mechanism of the hydrogen bond strengthening in the electronically excited state, while contrast with mechanism of hydrogen bond cleavage. Furthermore, we believe that the transient hydrogen bond strengthening behavior in electroniclly excited state of chromophores in hydrogen‐donating solvents exists in many other systems in solution. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

19.
A novel mixed‐ligand complex, [Cd(im)6][Cd(im)3(H2O)3]2(ans)6 · 8H2O ( 1 ), was obtained from the reaction ofCd(OAc)2 · 2H2O, imidazole (im) and sodium 4‐aminonaphthalene‐1‐sulfonate tetrahydrate (Na‐ans) in a mixed solvent at 25 °C. The complex was characterized by elemental analysis, IR spectroscopy, and X‐ray single crystal diffraction. There are two kinds of cations constructed by CdII atoms with a octahedral coordination arrangement in 1 . The CdII atom is bonded by six nitrogen atoms from six im ligands in the first cation, and the second central CdII atom is bonded by three nitrogen atoms of im molecules and three oxygen atoms belonging to water molecules. The ans anion acts as a counterion to balance the charge, and the adjacent anions are reversed but non‐parallel interlinked by N–H ··· O(S) hydrogen bonds into graphite‐like 2D sheet viewed from the c axis. The anionic channels along the [110] direction are filled with the cations, and the two kinds of cations are alternatingly arranged in the channels. The hydrogen‐bonding interactions together with the ionic bonds stabilize the crystal structure. The thermostability of the complex was investigated by TG and DSC.  相似文献   

20.
Four crystal structures of 3‐cyano‐6‐hydroxy‐4‐methyl‐2‐pyridone (CMP), viz. the dimethyl sulfoxide monosolvate, C7H6N2O2·C2H6OS, (1), the N,N‐dimethylacetamide monosolvate, C7H6N2O2·C4H9NO, (2), a cocrystal with 2‐amino‐4‐dimethylamino‐6‐methylpyrimidine (as the salt 2‐amino‐4‐dimethylamino‐6‐methylpyrimidin‐1‐ium 5‐cyano‐4‐methyl‐6‐oxo‐1,6‐dihydropyridin‐2‐olate), C7H13N4+·C7H5N2O2, (3), and a cocrystal with N,N‐dimethylacetamide and 4,6‐diamino‐2‐dimethylamino‐1,3,5‐triazine [as the solvated salt 2,6‐diamino‐4‐dimethylamino‐1,3,5‐triazin‐1‐ium 5‐cyano‐4‐methyl‐6‐oxo‐1,6‐dihydropyridin‐2‐olate–N,N‐dimethylacetamide (1/1)], C5H11N6+·C7H5N2O2·C4H9NO, (4), are reported. Solvates (1) and (2) both contain the hydroxy group in a para position with respect to the cyano group of CMP, acting as a hydrogen‐bond donor and leading to rather similar packing motifs. In cocrystals (3) and (4), hydrolysis of the solvent molecules occurs and an in situ nucleophilic aromatic substitution of a Cl atom with a dimethylamino group has taken place. Within all four structures, an R22(8) N—H...O hydrogen‐bonding pattern is observed, connecting the CMP molecules, but the pattern differs depending on which O atom participates in the motif, either the ortho or para O atom with respect to the cyano group. Solvents and coformers are attached to these arrangements via single‐point O—H...O interactions in (1) and (2) or by additional R44(16) hydrogen‐bonding patterns in (3) and (4). Since the in situ nucleophilic aromatic substitution of the coformers occurs, the possible Watson–Crick C–G base‐pair‐like arrangement is inhibited, yet the cyano group of the CMP molecules participates in hydrogen bonds with their coformers, influencing the crystal packing to form chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号