首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Free-surface fluctuations and turbulence in hydraulic jumps   总被引:1,自引:0,他引:1  
A hydraulic jump is the highly turbulent transition between a high-velocity impinging flow and a turbulent roller. The jump flow is characterised by some substantial air bubble entrainment, spray and splashing. In the present study, the free-surface fluctuations and air-water properties of the hydraulic jump roller were investigated physically for relatively small Froude numbers (2.4 < Fr1 < 5.1) and relatively large Reynolds numbers (6.6 × 104 < Re < 1.3 × 105). The shape of the mean free surface profile was well defined, and the time-averaged free-surface elevation corresponded to the upper free-surface, with the quantitative values being close to the equivalent clear-water depth. The turbulent fluctuation profiles exhibited a maximum in the first part of the hydraulic jump roller. The free-surface fluctuations presented some characteristic frequencies between 1.4 and 4 Hz. Some simultaneous free-surface measurements at a series of two closely located points yielded the free-surface length and time scales of free-surface fluctuations in terms of both longitudinal and transverse directions. The length scale data seemed to depend upon the inflow Froude number, while the time scale data showed no definite trend. Some simultaneous measurements of instantaneous void fraction and free-surface fluctuations exhibited different features depending upon the phase-detection probe sensor location in the different regions of the roller.  相似文献   

2.
The transition from supercritical to subcritical open channel flow is characterised by a strong dissipative mechanism called a hydraulic jump. A hydraulic jump is turbulent and associated with the development of large-scale turbulence and air entrainment. In the present study, some new physical experiments were conducted to characterise the bubbly flow region of hydraulic jumps with relatively small Froude numbers (2.4 < Fr1 < 5.1) and relatively large Reynolds numbers (6.6 × 104 < Re < 1.3 × 105). The shape of the time-averaged free-surface profiles was well defined and the longitudinal profiles were in agreement with visual observations. The turbulent free-surface fluctuation profiles exhibited a peak of maximum intensity in the first half of the hydraulic jump roller, and the fluctuations exhibited some characteristic frequencies typically below 3 Hz. The air–water flow properties showed two characteristic regions: the shear layer region in the lower part of the flow and an upper free-surface region above. The air–water shear layer region was characterised by local maxima in terms of void fraction and bubble count rate. Other air–water flow characteristics were documented including the distributions of interfacial velocity and turbulence intensity. The probability distribution functions (PDF) of bubble chord time showed that the bubble chord times exhibited a broad spectrum, with a majority of bubble chord times between 0.5 and 2 ms. An analysis of the longitudinal air–water structure highlighted a significant proportion of bubbles travelling within a cluster structure.  相似文献   

3.
A hydraulic jump is the rapid transition from a supercritical to subcritical free-surface flow. It is characterised by strong turbulence and air bubble entrainment. New air–water flow properties were measured in hydraulic jumps with partially developed inflow conditions. The data set together with the earlier data of Chanson (Air bubble entrainment in hydraulic jumps. Similitude and scale effects, 119 p, 2006) yielded similar experiments conducted with identical inflow Froude numbers Fr 1 = 5 and 8.5, but Reynolds numbers between 24,000 and 98,000. The comparative results showed some drastic scale effects in the smaller hydraulic jumps in terms of void fraction, bubble count rate and bubble chord time distributions. The present comparative analysis demonstrated quantitatively that dynamic similarity of two-phase flows in hydraulic jumps cannot be achieved with a Froude similitude. In experimental facilities with Reynolds numbers up to 105, some viscous scale effects were observed in terms of the rate of entrained air and air–water interfacial area.  相似文献   

4.
A hydraulic jump is a flow singularity characterised by a significant amount of air entrainment in the shear zone. The air is entrapped at the jump toe that is a discontinuity between the impinging flow and the roller. The impingement point is a source of air bubbles, as well as a source of vorticity. Herein the convective transport of air bubbles in the jump roller is re-visited. Some analytical extension is presented and the theoretical results are compared with some laboratory experiments conducted in a large-size facility operating at large Froude numbers. The turbulent air bubble mixing coefficient was found to increase linearly with increasing distance and be independent of the Froude and Reynolds numbers. Overall the study highlighted some seminal features of the air–water shear layer in hydraulic jumps with large Froude numbers (5.1 < Fr1 < 11.2). The air bubble entrainment in the mixing zone was a convective transport process, although there was some rapid flow de-aeration for all Froude numbers.  相似文献   

5.
A hydraulic jump is characterized by a highly turbulent flow with macro-scale vortices, some kinetic energy dissipation and a bubbly two-phase flow structure. New air–water flow measurements were performed in a large-size facility using two types of phase-detection intrusive probes: i.e. single-tip and double-tip conductivity probes. These were complemented by some measurements of free-surface fluctuations using ultrasonic displacement meters. The void fraction measurements showed the presence of an advective diffusion shear layer in which the void fractions profiles matched closely an analytical solution of the advective diffusion equation for air bubbles. The free-surface fluctuations measurements showed large turbulent fluctuations that reflected the dynamic, unsteady structure of the hydraulic jumps. The measurements of interfacial velocity and turbulence level distributions provided new information on the turbulent velocity field in the highly-aerated shear region. The velocity profiles tended to follow a wall jet flow pattern. The air–water turbulent integral time and length scales were deduced from some auto- and cross-correlation analyses based upon the method of Chanson [H. Chanson, Bubbly flow structure in hydraulic jump, Eur. J. Mech. B/Fluids 26 (3) (2007) 367–384], providing the turbulent scales of the eddy structures advecting the air bubbles in the developing shear layer. The length scale Lxz is an integral air–water turbulence length scale which characterized the transverse size of the large vortical structures advecting the air bubbles. The experimental data showed that the dimensionless integral turbulent length scale Lxz/d1 was closely related to the inflow depth: i.e. Lxz/d1 = 0.2–0.8, with Lxz increasing towards the free-surface.  相似文献   

6.
This paper describes measurements of void fractions, bubble frequencies and bubble sizes in hydraulic jumps with Froude numbers 2.0, 2.4, 3.7 and 4.8. In each case data were obtained with a dual-tip optical fibre probe at a large number of points throughout the jump. Across the lower part of the flow, dominated by air entrainment into a region of turbulent shear, void fractions follow a Gaussian distribution. In the upper region, dominated by interactions with the free surface, the void fraction follows the form of an error function. The intersection between these two profiles provides a well-defined boundary between the two regions. Comparisons are made with measurements at higher Froude numbers [by Chanson, H., Brattberg, T., 2000. Experimental study of the air–water shear flow in a hydraulic jump. International Journal of Multiphase Flow 26, 583–607] revealing a very large measure of compatibility between the two sets of data.  相似文献   

7.
This work concerns the analysis of experimental instantaneous fluid levels and three-component fluid velocity measurements in a stationary flow field generated by a Crump weir in a laboratory flume using an ultrasonic distance sensor and a three-probe arrangement of an ultrasonic Doppler velocity profiler. The tests are characterised by different and increasing Froude numbers (Fr = 0.10–0.38), with the free surface of the fluid ranging from flat (low Froude number) to almost aerated (high Froude number). The statistics of the free surface are computed, and the relevant length and velocity scales are measured. A free-surface boundary layer was detected having a thickness proportional to the root mean square of the free-surface height series and with a velocity scale that related well to the free-surface elevation time gradient. The mean velocity profiles are presented. There are many indicators that a specific regime occurs with an optimal tuning between free surface and turbulence. In this regime, the length scales are raised.  相似文献   

8.
The air entrainment characteristics of three separate Froude number hydraulic jumps are investigated numerically using an unsteady RANS, realizable kε turbulence model, with a Volume of Fluid treatment for the free surface. Mean velocity profiles, average void fraction, and Sauter mean diameter compare favorably with experimental data reported in literature. In all simulations, time-averaged void fraction profiles show good agreement with experimental values in the turbulent shear layer and an accurate representation of interfacial aeration at the free surface. Sauter mean diameter is well represented in the shear layer, and free surface entrainment results indicate bubble size remains relatively unchanged throughout the depth of the jump. Several different grid resolutions are tested in the simulations. Significant improvements in void fraction and bubble size comparison are seen when the diameter to grid size ratio of the largest bubbles in the shear layer surpasses eight. A three-dimensional simulation is carried out for one Froude number jump, showing an improvement in the prediction of entrained air and bubble size compared with two-dimensional results at a substantial increase in computation time. An analysis of three-dimensional vorticity shows a complex interaction between spanwise and streamwise vortical structures and entrained air bubbles. The jump is similar to a turbulent mixing layer, constrained by the free surface, with vortex pairing and subsequent fluctuations in free surface elevation. Downstream fluctuations of the toe are associated with a roll up of the primary spanwise vortex, fluctuations of the free surface, and counter-rotating streamwise vortex pairs. The action of these flow structures is likely responsible for the improvement in three-dimensional results.  相似文献   

9.
An experimental investigation was performed on a swirling flow of dilute surfactant solution with deformed free-surface in a cylindrical container driven by the constantly rotating bottom wall. The purpose of the experiment was to estimate weak viscoelasticity in the tested surfactant solutions as well as to investigate the flow characteristics. The tested fluid was an aqueous solution of CTAC (CTAC: cetyltrimethyl ammonium chloride), which is a cationic surfactant. Water, 40 ppm, 60 ppm and 200 ppm CTAC solution flows were tested at Froude numbers ranging from 2.59 to 16.3. Particle image velocimetry (PIV) was used to measure the secondary velocity field in the meridional plane. The deformed free-surface level was extracted from the PIV images. At a similar Froude number, the depth of the dip formed at the center region of the free surface was decreased for CTAC solution flow compared with water flow. The inertia-driven vortex at the up-right corner in the meridional plane becomes more and more weakened with increase of the solution concentration or viscoelasticity. Through analyzing the overall force balance compared with water flow, the first normal stress difference characterizing the viscoelasticity was estimated for the dilute CTAC solution flows. The result supports the viscoelasticity-based turbulent drag-reduction mechanism of surfactant solution flow.  相似文献   

10.
The hydraulic jump is the sudden transition from a high-velocity open channel flow regime to a subcritical flow motion. The flow properties may be solved using continuity and momentum considerations. In this review paper, recent advances in turbulent hydraulic jumps are developed: the non-breaking undular hydraulic jump, the positive surge and tidal bore, and the air bubble entrainment in hydraulic jumps with roller. The review paper demonstrates that the hydraulic jump is a fascinating turbulent flow motion and the present knowledge is insufficient, especially at the scales of environmental and geophysical flows.  相似文献   

11.
In an estuary, a tidal bore is a hydraulic jump in translation generated at the leading edge of the flood tide during the early flood tide under spring macrotidal conditions in a narrow funnelled channel. After formation, the bore is traditionally analysed as a hydraulic jump in translation and its leading edge is characterised by a breaking roller for Fr1 > 1.3–1.5. Herein new unsteady experiments were conducted to investigate in details the upstream propagation of breaking bore roller. The toe perimeter shape fluctuated rapidly with transverse distance and time. A characteristic transverse wave length of the toe perimeter was observed. Both the standard deviation of toe perimeter location and characteristic transverse wave length were comparable to field observations. The celerity of the roller toe fluctuated rapidly with time and space. The instantaneous longitudinal profile of the roller free-surface showed significant temporal and spatial fluctuations. Although the bore propagation may be analysed in an integral form in first approximation, the rapid fluctuations in roller toe perimeter and free-surface profiles indicated a strongly three-dimensional turbulent flow motion.  相似文献   

12.
Satisfying the boundary conditions at the free surface may impose severe difficulties to the computation of turbulent open-channel flows with finite-volume or finite-element methods, in particular, when the flow conditions are nearly critical. It is proposed to apply an iteration procedure that is based on an asymptotic expansion for large Reynolds numbers and Froude numbers close to the critical value 1.The iteration procedure starts by prescribing a first approximation for the free surface as it is obtained from solving an ODE that has been derived previously by means of an asymptotic expansion (Grillhofer and Schneider, 2003). The numerical solution of the full equations of motion then gives a surface pressure distribution that differs from the constant value required by the dynamic boundary condition. To determine a correction to the elevation of the free surface we next solve an ODE that is obtained from the asymptotic analysis of the flow with a prescribed pressure disturbance at the free surface. The full equations of motion are then solved for the corrected surface, and the procedure is repeated until criteria of accuracy for surface elevation and surface pressure, respectively, are satisfied.The method is applied to an undular hydraulic jump as a test case.  相似文献   

13.
Breaking waves in a free-surface homogeneous fluid flow in the neighborhood of a local variation in the channel depth are studied experimentally and theoretically. The structure of both a steady-state hydraulic jump generated by a local obstacle in the channel and an unsteady wave configuration consisting of two turbulent bores in the problem of lock failure is studied. Using the turbulent bore model [1], analytic profiles of breaking waves are obtained and the time-dependent problem is numerically investigated and compared with experimental data. It is shown that the model [1] with a hydrostatic pressure distribution over the depth adequately describes both the location and the structure of the steady-state and unsteady wave fronts.__________Translated from Izvestiya Rossiiskoi Academii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, 2005, pp. 62–70. Original Russian Text Copyright © 2005 by Gusev and Lyapidevskii.  相似文献   

14.
 A newly developed non-intrusive approach has been devised for studying near-surface flows where it is important to be able to construct correlations between small-sloped free-surface deformations and near-surface velocities. This method combines digital particle image velocimetry (DPIV) and the reflective mode of the free-surface gradient detector (FSGD) technique into a single measurement system, providing us with an approach to be able to characterize correlations between elevation and kinematic properties, such as velocity and vorticity, which is essential in understanding near surface turbulence. Furthermore, as the free-surface elevation is directly proportional to the pressure for low Froude number flows, this method will allow for the measurement of pressure near the free surface. This will also be useful in calculating the pressure-velocity term in the turbulent kinetic energy equation for near-surface flows. The approach is explained and demonstrated by measuring these correlations for a vertical shear layer intersecting a free surface. Received: 2 August 1999/Accepted: 23 July 2000  相似文献   

15.
Particle image velocimetry (PIV) was employed to measure the two components of the turbulent velocity field in the initial stage of an open-channel flow in a streamwise-wall-normal plane, and the free-surface level was discriminated from the PIV image. The details of this technique was described and demonstrated by showing the instantaneous velocity field together with the free-surface shape, statistics of velocity field, and the wave-turbulence interaction terms. Preliminary experimental results showed that the turbulence intensity of the streamwise velocity fluctuations (u′) decreased, whereas that of the wall-normal velocity (v′) increased near the bottom wall with downstream distance in the initial stage of an open-channel flow; (g is the fluctuation of free-surface level) had a negative value, had a positive value near the free surface, and the surface-wave-affected depth deepened with downstream distance.  相似文献   

16.
Novel accelerator applications favor free-surface liquid–metal flows, in which the liquid acts both as a target producing secondary particles but also to remove efficiently the heat deposited. A crucial aspect for the operation is the continuous monitoring of both shape and position of the liquid’s surface. This demands, in a nuclear environment, a non-intrusive measurement technique with high temporal and spatial resolution. In this context, the double-layer projection (DLP) technique based on geometric optics has been developed, allowing one to detect either point-wise or area-wise the shape and position of the nearly totally reflecting liquid–metal surface. The DLP technique employs a laser beam projected through a coplanar glass plate to the surface from which it is reflected to the plate again. Beam locations captured by means of a camera permit the position and shape of the surface to be reconstructed. The parameters affecting the resolution and performance of the DLP technique are discussed. Additionally, validation studies using static and moving objects of pre-defined shape are conducted, exhibiting spatial and temporal resolutions of 300 μm and 100 Hz, respectively. Finally, the DLP system is applied to perform measurements of a circular hydraulic jump (CHJ) in a liquid metal. The DLP system has proved the capability to measure the jump both qualitatively and quantitatively. Additionally, the experiments identified, at high Reynolds numbers, the existence of a two-step jump. The analysis of spectral data of the DLP surface measurements shows clearly that, at the outer radius, gravity waves occur. Also, contributions from the pump oscillations were found, demonstrating the high performance of the DLP system.  相似文献   

17.
The current work describes the development of a non-intrusive optical method for the quantitative determination of water heights along a hydraulic jump in shooting water flows on a water table. The technique involves optically superimposing a series of alternating dark and clear fringes on the water flow. It is proposed that the fringe deviations seen under a hydraulic jump can be simulated using a series of optical prisms oriented along the direction of the hydraulic jump. The height of each prism gives the local maximum water height at the fringe location. Three types of theoretical prism configurations (isosceles flat-topped prism, scalene flat-topped prism and rounded-topped prism models) have been studied for two flow systems: shooting flow around a wedge and around a cylinder. Equations relating the physical characteristics of the deviated fringes to the height of the theoretical prism and hence the local water height are presented. The variation in water height along a hydraulic jump for flow around a wedge obtained using the optical technique has been compared with heights obtained using a depth gauge. The results were in good agreement for the range of Froude numbers studied (Fr=1.9−3.6). The rounded-topped prism model led to the best agreement with the physical measurements, within 11% throughout the range of conditions studied. The uncertainty associated with the water height determination using the optical technique is ±10%. Received: 15 September 1998/Accepted: 16 April 1999  相似文献   

18.
The large-scale turbulence and high air content in a hydraulic jump restrict the application of many traditional flow measurement techniques. This paper presents a physical modelling of hydraulic jump, where the total pressure and air–water flow properties were measured simultaneously with intrusive probes, namely a miniature pressure transducer and a dual-tip phase-detection probe, in the jump roller. The total pressure data were compared to theoretical values calculated based upon void fraction, water depth and flow velocity measured by the phase-detection probe. The successful comparison showed valid pressure measurement results in the turbulent shear region with constant flow direction. The roller region was characterised by hydrostatic pressure distributions, taking into account the void fraction distributions. The total pressure fluctuations were related to both velocity fluctuations in the air–water flow and free-surface dynamics above the roller, though the time scales of these motions differed substantially.  相似文献   

19.
The flow structure in a steady hydraulic jump in both the non-aerated and aerated regions was measured using the image-based particle image velocimetry and bubble image velocimetry techniques, respectively. Three highly aerated steady jumps with Froude numbers varying from 4.51 to 5.35 were tested, and a weak jump with a Froude number of 2.43 was generated for comparison. Mean velocities and turbulence statistics were obtained by ensemble averaging the repeated velocity measurements. Based on the mean velocities, the flow structure in the steady jumps was classified into four regions to distinguish their distinct flow behaviors; they are the potential core region, the boundary layer region, the mixing layer region, and the recirculation region. The flow structure in the weak jump features only three regions without the recirculation region. In addition, spatial variations of mean velocities, turbulence intensity, and Reynolds stresses were also presented. It was observed that the maximum horizontal bubble velocity and maximum horizontal water velocity occur at the same location in the overlapping regions of potential core and mixing layer. The ratio between the maximum horizontal bubble velocity and maximum horizontal water velocity is between 0.6 and 0.8, depending on the Froude number. Examining the mean horizontal bubble velocities in the mixing layer, a similarity profile was revealed with representative mixing layer thickness as the characteristic length scale and the difference between the maximum positive and maximum negative velocities as the characteristic velocity scale. It was also found that the mean horizontal water velocities in the near-wall region are self-similar and behave like a wall jet. Further analyzing autocorrelation functions and energy spectra of the water and bubble velocity fluctuations found that the energy spectra in the water region follow the ?5/3 slope, whereas the spectra in the bubble region follow a ?2/5 slope. In addition, the integral length scale of bubbles is one order of magnitude shorter than that of water.  相似文献   

20.
Two-degree-of-freedom vortex induced vibration (VIV) of a low-mass zero-damping circular cylinder horizontally placed near a free surface at Re = 100 was numerically studied with an adaptive Cartesian cut-cell/level-set method. Two Froude numbers and various normalized submergence depths were considered. The results reveal that the Froude number affects the critical normalized submergence depth and possible physical mechanisms are proposed. The in-line vibration amplitude cannot be neglected. Proximity to a free surface strengthens and suppresses the VIV for low and high Froude numbers, respectively; increases the occurrence of amplitude modulation; and in general enhances the magnitude of the time-averaged lift coefficient, which is always negative. The phase lag of the transverse displacement behind the lift coefficient jumps at some reduced velocity, which strongly depends on the Froude number and normalized submergence depth. Regular trajectories exist only in cases with a small vibration amplitude or a large normalized submergence depth. The vortex structures in any case with large transverse amplitude basically originate from the alternative vortex shedding with the negative vortex weaker than the positive one. For the higher Froude number, an extra free surface positive vortex interacts with the vortices from the cylinder surface. The vibration frequency deviates from the natural structure frequency in fluids in the large-amplitude regime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号