首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 67 毫秒
1.
《工程热物理学报》2021,42(9):2378-2382
铁铬铝作为事故容错燃料包壳的主要候选材料,能够抑制反应堆在严重事故下产氢释能的风险,提高反应堆的事故耐受能力。本文基于可视化方法研究了不同粗糙度的铁铬铝在骤冷过程中沸腾传热行为,通过一维导热反问题求解计算铁铬铝的表面热流密度和温度,分析了液体过冷度和粗糙度对铁铬铝骤冷行为的影响。研究结果表明随着过冷度的增大,铁铬铝的骤冷时间减小,最小膜态沸腾温度增大。铁铬铝表面的膜态沸腾换热与粗糙度无关,最小膜态沸腾温度受表面亲水性影响显著。  相似文献   

2.
通过实验研究了顶部受热低温贮罐中低温流体温度分层、压力变化情况,并进行了理论计算。研究结果显示,在静置过程中贮罐在顶部漏热时气相空间温度分层较为显著,且由于顶部的持续漏热,气相空间的温度梯度一直存在;液相的温度梯度曲线与误差函数曲线一致;贮罐的压力可分为两部分:初始的快速增压和之后的稳定增压阶段;随着静置时间的增加,液体温度分层更加明显,贮罐气枕压力逐渐变大。该研究为确定贮罐安全贮存增压压力和贮存时间提供技术依据,为工程实际应用提供支撑。  相似文献   

3.
生物膜滴滤床内温度分布特性实验研究   总被引:1,自引:0,他引:1  
对生物膜滴滤塔填料床内温度分布特性进行了实验研究,获得了循环液流量、气体流量以及进口甲苯浓度对填料床内温度分布的影响规律。实验结果表明:填料床内温度沿循环液流动方向逐渐升高,表明生物降解代谢反应属于放热反应;在逆流操作系统中,填料床下部碳源丰富,填料床下部的温升明显大于上部的温升;随着循环液流量的增大,填料床内沿流动方向上的温升越小;液体流量较大时,填料床内温升随着气体流量的增大而减小;滴滤塔进口甲苯浓度越大, 填料床内温升越大。  相似文献   

4.
超临界CO2在垂直圆管内对流换热实验研究   总被引:5,自引:0,他引:5  
本文对超临界压力CO2在垂直圆管(Din=2mm)内在高进口雷诺数和低进口雷诺数条件下的对流换热进行了实验研究,以研究变物性、浮升力和热加速对流动和换热的影响.实验结果发现,在低进口雷诺数情况下,向上流动中管子入口处出现了局部壁面温度下降,而在向下流动中未观察到此类现象;在高进口雷诺数情况下,向上流动中壁面温度发生了异常分布,这主要是因为向上流动中浮升力使得湍流发生了层流化现象,而在向下流动中未观察到此类现象.  相似文献   

5.
介绍了利用两台软X射线能谱仪和多针孔软X射线条纹相机配合诊断腔内的辐射温度。实验解决了因等离子体喷射引起的诊断口缩孔带来的测不准问题,测到了诊断孔的二维缩孔图像和缩孔时间过程,从而给出了腔内辐射温度随时间的变化关系。通过实验数据分析,建立了初步的诊断孔缩孔模型。 关键词:  相似文献   

6.
本文对超临界压力下航空煤油在圆管内(竖直向上流)的对流传热特性进行实验研究,讨论了入口温度及热流密度对于换热的影响规律;并对实验过程中出现的传热及流动不稳定现象进行了分析。结果表明:入口段的传热恶化仅在入口温度较低时发生。3 MPa压力下在高热流密度工况会发生传热恶化现象。传热及流动不稳定现象发生于低压力、低入口温度及高热流密度工况下;不稳定现象发生时伴随着外壁温的剧烈振荡,并发出连续而尖锐的声响。最后,选取Gnielinski公式进行Nu数的计算,与实验结果进行对比分析。  相似文献   

7.
在压力2.5~4 MPa, 质量流量0.7~1.7 g/s, 热流密度0.06~1 MW/m2的实验条件下, 对煤油在内径1 mm, 长度300 mm竖直上升圆管内的流动与传热特性开展了实验研究, 并分析了传热系数随局部油温的变化及不同实验参数对传热的影响.结果表明, 超临界压力下煤油传热主要由自身物性和流动状态决定.超临界压力煤油传热过程大致可以分为3个区域:正常传热区传热强化区和传热恶化区.传热强化主要是湍流掺混增强和近壁面流体在拟临界温度附近物性剧烈变化的综合作用; 传热恶化则是因为壁温及近壁面流体温度远高于拟临界温度, 在近壁面发生了类似于亚临界状态下的“拟膜态沸腾”.   相似文献   

8.
本文通过实验测量和描绘了4种硅管和2种锗管PN结的电压—温度特性曲线,用最小二乘法求解了电压温度系数和禁带宽度,并分析了结电压与温度的相关性,证实结电压与温度密切相关。  相似文献   

9.
采用三维照相法对垂直圆管内稀疏层流泡状流充分发展段的相分布进行了实验研究。得到了8个流动工况下均匀尺寸气泡形成的泡状流的空泡率分布以及6个流动工况下非均匀尺寸气泡形成的泡状流的总体和大、小气泡组各自的空泡率分布.实验结果表明当气泡组的平均直径小于约3.5mm时,其空泡率分布在管壁附近出现尖峰;当气泡组的平均直径大于约 3.5 mm时,其空泡率分布的尖峰移向管中心;气泡尺寸对泡状流的相分布有重要影响.  相似文献   

10.
微圆管内液体流动与换热特性的实验研究   总被引:2,自引:0,他引:2  
以去离子水作为工质,在当量直径300-1570μm的微圆管(1cr18Ni9Ti)内进行层流流动与换热特性的实验研究。实验结果表明当壁面粗糙度超过1%时摩擦系数随着壁面相对粗糙度的增加而增加。在给定外壁面热流密度的条件下,当雷诺数小于100时,管壁轴向导热对换热特性的影响随着壁厚与内径比的增加而增大;当雷诺数大于100时,轴向导热的影响随着雷诺数的增加逐渐减弱,充分发展区的Nu数接近常规值4.36。  相似文献   

11.
 应用高压原位差热方法,直接测量了压力下锗的固化参数─—固化温度与过冷度。高压差热信号表明,当压力大于3 GPa时,锗在凝固过程中可能发生结构相变。X射线结构分析表明,在最终的样品中除GeⅠ相外,还形成GeⅢ相和GeⅣ相。  相似文献   

12.
本文对工频过电流冲击下准绝热环境中的Bi-2223/Ag不锈钢加强多芯带的失超及恢复特性进行了实验研究.通过实验测量了在液氮温度(77K)、自场下Bi-2223/Ag超导带在幅值为100 A至1 015 A,时间为300 ms的工频电流冲击下,超导带材两端的电压,电流及带材表面温度的变化,得到冲击期间各参量的变化规律.另外,还比较了冲击电流相同、正常载流不同时,带材的温升及失超恢复时间,结果表明正常载流大时,则带材温升较高,失超恢复时间长.正常载流为60A<0.5Ic时,带材失超恢复时间为冲击时间的21倍.  相似文献   

13.
本文研究了一种非牛顿流体-高聚物水溶液在垂直上升管内强制流动沸腾过程中的壁温沿管长变化及临界热负荷的特点,并考察了高聚物种类、浓度、质量流速等对临界热负荷和壁温工况的影响。  相似文献   

14.
由于温度分布不均匀而导致磁场中的磁性流体受到非平衡的磁场力作用,而发生流动的现象,称为热磁对流。它是一种由体积力驱动的类似自然对流的流动,可以通过设计合适的磁场来控制热磁对流的强度和方向。本文对水平圆管通道内热磁对流进行了实验研究,测量了通道内及壁面的温度分布,并通过两种不同的方法根据实验测得的温度分布估算了热磁对流的流量和速度的大小。  相似文献   

15.
为了进一步探究脉管制冷机内部流场与温度场的复杂时空特性,采用数值模拟方法,详细研究和分析了基本型、小孔型和双向进气型脉管制冷机的关键部件—回热器和脉管组件内流场与温度场的时空变化持性,得到了相应的时空分布图,有助于直观地理解回热器与脉管组件内热力参数的动态变化情况。与此同时,通过分析小孔阀和双向进气阀对脉管冷热端温度波动的影响规律,进一步指出:小孔阀和双向进气阀均会导致脉管冷热端的温度波动,且小孔阀造成的温度波动幅度要大于双向进气结构,因此,小孔阀是导致脉管冷热端温度不规则变化的主要因素。  相似文献   

16.
本文介绍了两种热电偶冷端温度补偿电路在物理实验测量中的应用及校准方法,对热电偶的工作原理、冷端温度补偿必要性作了说明,并详细介绍了冷端温度补偿过程.  相似文献   

17.
立式水轮发电机通风系统及转子温度场研究   总被引:3,自引:0,他引:3  
本文采用有限元软件对某梯级电站立式水轮发电机通风系统进行数值模拟,在此基础上计算转子磁极各表面的散热系数,结合电机热耗,得到转子磁极温度分布.研究表明:采用CFD能较准确地模拟发电机通风系统的流场,为电机通风系统设计和优化提供有效的依据;转子磁轭端部加装弧形风扇后产生的冷却流量满足实际运行过程中电机冷却的需要;转子温度在其设计的绝缘容许温度范围内,且有足够裕度,可长期安全运行.  相似文献   

18.
本文对空气在竖直圆管中的湍流混合对流换热进行了实验研究和数值模拟,并对异种气体(氦气)对混合对流换热的影响进行了初步的实验研究。研究发现,空气在竖直圆管中向上流动时,随着热流密度的不断增大,出现换热恶化现象。如果浮升力足够大,则换热效果在降到最低点后又好转。在实验过程中,由于实验条件所限没有发现异种气体对混合对流换热有显著的影响。  相似文献   

19.
侯德亭  王广俊 《大学物理》1997,16(11):38-39
给出了弯曲单模光纤两正交模的相位差与应力双折射和温度的关系式.设计出用单根光纤测量温度的实验装置.  相似文献   

20.
海水温度垂直分布预报数据同化的离散伴随算子法   总被引:4,自引:0,他引:4  
以一维水温模型为例,利用伴随算子法进行海洋观测数据同化,以便给水温的数值预报提供一个较准确的初始场。讨论了离散伴随算子法的思想,最优化过程,计算水温方程和伴随方程的差分格式,并图示描述水温场的初始猜测和同化后的分布。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号