首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The aggregation of phytochrome purified from etiolated pea ( Pisum satirum cv. Alaska) and rye ( Secale cereale cv. Cougar) tissues was investigated by centrifugation and turbidimetry. Purified pea phytochrome (A669/A280= 0.88), if irradiated with red light, became precipitable in the presence of CaCl2. The precipitation upon red-light irradiation was optimal at a Ca2- or Mg2+ concentration of 10–20 m M , was greater at increased phytochrome concentration or lower pH values, and was inhibited by 0.1 M KG. The precipitated phytochrome slowly became soluble after far-red light exposure.
Turbidity of pea phytochrome solutions after red-light irradiation also increased rapidly in the presence of either Ca2+ or Mg2+. Far-red light exposure after the red light cancelled the turbidity increase. Rye phytochrome showed less turbidity increase than pea phytochrome and occurred only in the presence of Ca2+. Partially degraded pea phytochrome produced by endogenous proteases in the extract did not show the turbidity increase. Undegraded pea phytochrome also associated with microsomal fractions under conditions similar to those described above, but the partially degraded phytochrome did not.  相似文献   

2.
Abstract— Photoinduced pH changes in unbuffered solutions of undegraded pea phytochrome were studied at 10oC by using a glass electrode. Red light irradiation caused alkalinization of the solutions in the pH range 5.2–xs7.5 and acidification in pH 7.5–8.9. The pH changes were fully reversed by a subsequent irradiation with far-red light. The red and far-red light effects were repeatedly reversible. The solution of tryptic peptide of phytochrome (mol. wt 60000) showed similar photoreversible pH changes.  相似文献   

3.
4.
Abstract— Red light can promote (a) the straightening of the curvature ( Phaseolus vulgaris, Pisum sativum ) (b) the formation of a loop ( Phacelia tanacetifolia and Picea abies ) or (c) the induction of a curvature which does not occur in the darkness ( Lactuca sativa ). Thesc red-light induced movements could be reversed by following each brief red exposure with short irradiation by far-red light. These reactions are controlled by the phytochrome system.
On the other hand, exposure to far-red and blue light during a long period can induce other movements:
(a) The light re-opens the hook which has been closed by red radiation ( Lactuca sativa ).
(b) The light induces the straightening of the dark-induced curvature ( Phacelia tanacetifolia ). These facts may be due to an unknown property of phytochrome or to the action of another photoreceptor.  相似文献   

5.
Abstract— Turions of the duckweed Spirodela polyrhiza contain about 70% starch on the dry weight basis. The rate of starch degradation in nondormant turions was highest in continuous red light (cR) followed by continuous blue light (cB), whereas continuous far red light (cFR) is almost ineffective. Continuous R could be substituted by repeated R pulses; this effect was not photoreversible by FR pulses applied after hourly R pulses. This suggested that R-dependent high irradiance response is the mode of phytochrome action in mediating starch degradation. Comparing the mode of phytochrome action with that of phytochrome mutants of other plants it can be assumed that phytochrome B is the photoreceptor involved. Application of the translation inhibitor cycloheximide immediately stopped the phytochrome-dependent starch degradation demonstrating the involvement of de novo synthesis of proteins.  相似文献   

6.
A new photomorphogenesis was found in the plasmodium of the true slime mold Physarum polycephalum: the plasmodium broke temporarily into equal-sized spherical pieces, each containing about eight nuclei, about 5 h after irradiation with light. Action spectroscopic study showed that UVA, blue and far-red lights were effective, while red light inhibited the far-red-induced fragmentation. Difference absorption spectra of both the living plasmodium and the plasmodial homogenate after alternate irradiation with far-red and red light gave two extremes at 750 and 680 nm, which agreed with those for the induction and inhibition of the fragmentation, respectively. A kinetic model similar to that of phytochrome action explained quantitatively the fluence rate-response curves of the fragmentation. Our results indicate that one of the photoreceptors for the plasmodial fragmentation is a phytochrome.  相似文献   

7.
Abstract— Face-to-profile chloroplast movement in Mougeotia was induced by sequences of strong blue and red short irradiations. This type of response occured only when blue light was applied prior to or simultaneously with red light, and far-red irradiation was necessary after the sequence to cancel the remaining gradient of the far-red absorbing form of phytochrome Pfr. The dependence of the response magnitude on blue and red light sequences was studied for a wide range of light durations and dark intervals. The relationship between the response and the dark interval points to the lack of direct coupling between phytochrome and blue-absorbing “cryptochrome”. It was postulated that a photoproduct having a life-time of2–3 min is formed by the blue-light-mediated reaction. This photoproduct interacts with phytochrome during its transformation or with its final Pfr form.  相似文献   

8.
The accumulation of phytochrome in the dark was measured for Avena sativa seedlings after a white light pretreatment and for Sorghum vulgare seedlings after continuous red or far-red light treatments, using the herbicide Norflurazon to prevent greening under continuous irradiation. In both cases the accumulation of phytochrome depends on the state of the phytochrome at the light-dark transition: high Pfr levels (red light pulse) led to a slower rate of phytochrome accumulation than lower Pfr levels (long wavelength far-red (RG 9) light pulse). Poly-(A+)-RNA was isolated fromA. sativa seedlings grown for 48 h in darkness + 24 h WL + light pulse (5 min) (red, RG 9 light, red followed by RG 9 light or RG 9 followed by red light pulse) + 19 h darkness. The poly-(A+)-RNA was translated in a rabbit reticulocyte lysate system and the translation products were immunoprecipitated by specific anti-phytochrome antibodies. It was demonstrated that the activity of mRNA coding for phytochrome was under phytochrome control.  相似文献   

9.
Abstract— Experiments with irradiation sequences where red precedes far-red lead to the conclusion that, in turnip, phytochrome is the only pigment mediating anthocyanin synthesis in red and far-red. Results from experiments where far-red precedes red, however, suggest that more than one reaction is involved. A possible interpretation is that the 'high-energy' reaction in far-red and the low energy red/far-red reversible reaction are mediated by two different forms of phytochrome.
The 'high-energy' reaction in blue light does not appear to depend on phytochrome.  相似文献   

10.
Abstract— Based on measurements with a single beam spectrophotometer, it has been found that subsequent red/far red irradiation cycles, which are usually given to monitor phytochrome content by dual wavelength spectroscopy, induce chlorophyll-related absorption changes in maize coleoptiles. Therefore, the difference signal, usually measured between 730 and 800 nm or 660 and 730 nm after saturating red and far red irradiations, does not represent solely the phytochrome content of preirradiated samples.  相似文献   

11.
Abstract— Fast chloroplast orientation in Mesotaenium from profile position to face position cannot be induced by either red (R) or blue (BL) light (in contrast to Mougeotia ). Rather interaction of light signals mediated by phytochrome and blue-light photoreceptor(s) is essential for the response. If both light treatments are separated in time, the irradiation sequence R-BL is much more effective than BL-R, i. e. a gradient of the far-red (FR)-absorbing form of phytochrome (Pfr) renders following BL highly effective, but BL cannot increase the responsiveness to following Pfr. The memory of a R irradiation before BL holds only for some minutes, indicating that the physiological activity of Mesotaenium -Pfr and its photoproducts is very short-lived. This transient signal mediated by Pfr can be transformed to a more stable internal signal by interaction with BL. The interaction process does not occur at the level of photoperception. Rather, early products of the phytochrome-initiated signal transduction chain interact with excited cryptochrome or an early product of it; Pfr can be removed by FR before the onset of BL. The internal signal stores the directional information of the Pfr-gradient, so that BL is now fully effective and induces chloroplast movement.  相似文献   

12.
Calcium ions have been proposed to serve as important regulatory elements in stimulus-response coupling for phytochrome responses. An important test of this hypothesis will be to identify specific targets of calcium action that are required for some growth or development process induced by the photoactivated form of phytochrome (Pfr). Initial studies have revealed that there are at least two enzymes in pea nuclei that are stimulated by Pfr in a Ca(2+)-dependent fashion, a calmodulin-regulated nucleoside triphosphatase and a calmodulin-independent but Ca(2+)-dependent protein kinase. The nucleoside triphosphatase appears to be associated with the nuclear envelope, while the protein kinase co-purifies with a nuclear fraction highly enriched for chromatin. This short review summarizes the latest findings on these enzymes and relates them to what is known about Pfr-regulated nuclear metabolism.  相似文献   

13.
Etiolated pea seedlings require transformation of Pr phytochrome to Pfr before they display optimal phototropic response to unilateral blue light. This study investigates the possible role of auxin transport in explaining these phenomena. Labeled [2-14C]IAA applied to the intact terminal buds of dark-grown and red light-treated pea seedlings was measured 210 min later on the shaded and illuminated sides of the epicotyl as a function of direction and duration of irradiation with blue light. Totally darkened epicotyls show an asymmetry in distribution of radioactivity in the upper growth zone of the epicotyl, in favor of the side under the concave part of the apical hook. Red light, which greatly potentiates curvature toward subsequent unilateral blue light, lowers this asymmetry. Blue light directed to the epicotyl of red-pretreated plants in a plane parallel to the hook and from the side bearing the convex portion of the hook induces positive phototropic curvature as well as a surplus of radioactivity on the illuminated side of the upper epicotyl and on the shaded side of the lower growth zone of the epicotyl. Light directed to the side bearing the concave part of the hook also causes an accumulation of counts in the upper part of the lighted side but produces neither curvature of the epicotyl nor accumulation of counts in the lower shaded side. Because of this built-in physiological asymmetry in the growth zone just below the apical hook, it is difficult to explain the effects of red and blue light on curvature in terms of patterns of auxin distribution alone.  相似文献   

14.
Abstract— In shoots of milo ( Sorghum vulgare Pers.) appearance of ribulosebisphosphate carboxylase (RuBPCase) and of translatable mRNA for its small subunit is stimulated strongly by red light (R, operating through phytochrome) and UV-A light (UV-A). Ultraviolet-A is more effective than R.
The mode of coaction between phytochrome and light absorbed by the blue/UV-A light photoreceptor ('cryptochrome') was analyzed in detail in case of enzyme appearance. Fluence rate dependencies, lagphases and the time course of the response are compatible with the view that UV-A intensifies a process which is occurring in R alone albeit at a lower rate.
With both light qualities the light effect is fully reversible by far-red light up to 1 h. This means that during this period only phytochrome (Pfr) controls the terminal response, i.e. the actual appearance of RuBPCase. During this 1 h period after the onset of light UV-A or R have no effect on the level of translatable mRNA for the small subunit of RuBPCase indicating that it requires more than 1 h for the light signal to affect gene expression.
When R and UV-A are given longer onset of escape from full reversibility is observed at the same time for both light qualities in the case of RuBPCase appearance. The extent of the reversible response is greater after UV-A pretreatment than after a R pretreatment.
It is argued that the data are consistent with the concept that phytochrome (Pfr) controls the terminal photoresponse, in the present case appearance of RuBPCase, while light absorbed via cryptochrome leads to an increase in responsiveness of the RuBPCase producing machinery towards Pfr.  相似文献   

15.
Sporulation of the true slime mold Physarum polycephalum (Myxomycetales) can be triggered by the far-red/red reversible Physarum phytochrome. Physarum plasmodia were analyzed with a purpose-built dual-wavelength photometer that is designed for phytochrome measurements. A photoreversible absorbance change at 670 nm was monitored after actinic red (R) and far-red (FR) irradiation of starved plasmodia, confirming the occurrence of a phytochrome-like photoreceptor in Physarum spectroscopically. These signals were not found in growing plasmodia, suggesting the Physarum phytochrome to be synthesized during starvation, which makes the cells competent for the photoinduction of sporulation. The photoconversion rates by R and FR light were similar in the phytochromes of Physarum and etiolated oat shoots. In dark-grown Physarum plasmodia that had not been preexposed to any light only R induced a detectable absorbance change while FR did not. This indicates that most (at least 90%) of the photoreversible pigment occurs in the red-absorbing form. Since the effectiveness of FR in triggering sporulation was enhanced by preirradiation with R, it is concluded that at least part of the Pr can be photoconverted to the active Pfr photoreceptor species. We propose a kinetic mechanism for the photocontrol of sporulation by photoconversion of Pfr, which may also hold for the high-irradiance response to FR in Arabidopsis and Cuscuta.  相似文献   

16.
Abstract —Anthocyanin synthesis in cabbage and mustard seedlings depends upon duration and irradiance of the light treatment. The relative effectiveness of radiation in various spectral regions depends upon the length of the irradiation and decreases with increasing dose. In intermittent light treatments, far-red light can reverse the promoting action of red light if the dark interval between successive irradiations is longer than one hour. If the length of the dark interval is less than one hour, far-red applied immediately after each red irradiation, enhances anthocyanin accumulation. Anthocyanin accumulation under various light treatments seems to correlate, to some extent, with the rate of phytochrome decay, but not with chlorophyll production. Anthocyanin accumulation is inhibited by 2,4-dinitrophenol and by the ammonium ion, but not by DCMU. The ammonium ion inhibits anthocyanin accumulation induced by a single, short red irradiation. This suggest that the ammonium ion may have a wider spectrum of action in vivo than in chloroplast preparations where it acts as a specific uncoupler of photophosphorylation. Streptomycin inhibits chlorophyll synthesis and enhances anthocyanin accumulation. These results suggest that there is very little, if any, interaction between photosynthesis and ‘high-irradiance-reaction’ anthocyanin synthesis in cabbage and mustard seedlings.  相似文献   

17.
Abstract— Fluorescence spectra of native rye phytochrome were determined under different light conditions at liquid nitrogen temperature. Fluorescence spectrum of the red-light-absorbing form (Pr) had a major peak at about 685 nm (14 600 cm−1) and a broad sub-peak at about 515 nm (19 400 cm−1). The peak height at 685 nm was reduced by irradiation with monochromatic light of 640 nm, and a new peak became obvious at about 702 nm (14250 cm−1). This spectral change was almost completely reversed by subsequent irradiation with 700-nm light. Fluorescence spectrum of the photoequilibrium mixture of Pr and far-red-light absorbing form under continuous red light showed a sharp peak at about 685 nm having a peak height ca. 12% of Pr, and a broad sub-peak at about 508 nm (19 700 cm−1). Light of 730 nm did not reduce the peak height at about 685 nm but induced a new shoulder at about 699 nm (14300 cm−1). Monochromatic light of 640 and 700 nm given following the light of 730 nm could not reverse the spectral change at 699 nm induced by the irradiation with 730-nm light. Fluorescence spectrum of Pr in partially degraded phytochrome was similar to that in native phytochrome but the peak position in the red region was shifted by about 5 nm (100 cm−1) to the blue.  相似文献   

18.
In filaments of the moss Ceratodon purpureus , phototropism is controlled by the photoreceptor phytochrome. Thirty-three aphototropic mutants with a proposed defect in phytochrome-chromophore biosynthesis were isolated and analyzed. The phototropic response of those mutants was rescued with the precursor of the phytochrome chromophore, biliverdin. Phytochrome spectral activity was measured in 19 arbitrarily chosen mutants. All contained low but still measurable quantities of photoactive phytochrome; the highest level was around 15% of the wild-type. The level of total phytochrome (apophytochrome and holophytochrome) as assayed by immunoblotting was indistinguishable from wild-type. The content of photoactive phytochrome in Ceratodon is light-regulated. Phytochrome of wild-type kept for 24 h in red light was reduced to 50% as compared to dark controls but was unaffected by blue. The red-light-induced decrease was partially reversible by far-red light, indicating that phytochrome itself is the photoreceptor for this response. This regulation was further analyzed with the mutant ptr114 , which contains 15% photoactive phytochrome as compared to the wild-type. In this mutant, continuous red light given for 6 days decreased the level of spectrally active phytochrome down to 25% of dark controls, whereas the amount of phytochrome found on immunoblots was hardly reduced. This indicates that the loss of phytochrome affects only the holoprotein and implies that Ceratodon phytochrome is specifically degraded as a far-red-absorbing phytochrome.  相似文献   

19.
Abstract— In vitro phosphorylation of some polypeptides was affected in extracts obtained from 5-and 6-day-old plants irradiated with 5 min of red light. The phosphorylation of 55 kDa polypeptide in both 5- and 6-day-old plants, a 60 kDa, and 76 kDa polypeptide in 6-day-old plants and 70 kDa, 67 kDa polypeptide in 5-day-old plants was stimulated by red light. This effect was reversible by far-red light. The extent of stimulation by red light and reversal by far-red light varied for different polypeptides. No differential effect of red and far-red light was seen on the phosphorylation of 94 and 40 kDa polypeptides. In fact, phosphorylation of 94 kDa polypeptide in 6-day-old plants decreased on red light irradiation. These results show that the phosphorylation or dephosphorylation of some proteins is affected by phytochrome and the effect of light is also dependent on the age of the plant.  相似文献   

20.
Abstract— Phototransformation at 2°C of the red-absorbing form of phytochrome (Pr) to the far-redabsorbing form (Pfr) was studied with both undegraded oat ( Avena sativa L., cv. Garry) and undergraded pea Pisum sativum L., cv. Alaska) phytochrome. Phototransformation was initiated by a 15-ns laser pulse with maximum emission near 600 nm and output power of 30 mJ. The first resolvable transformation intermediate exhibited relative to Pr a maximum absorbance increase near 700 nm and was fully present at the earliest time measured, which was 60 ns after the flash. This intermediate absorbance decayed by two reactions for oat phytochrome (half-lives of 11 and 140 μs assuming parallel reactions) and by three for pea phytochrome (half-lives of 14, 280 and 1600 μs assuming parallel reactions). The kinetics of the slowest reaction for pea phytochrome, however, might be somewhat distorted by an instrument artifact. The appearance of the far-red-absorbing phytochrome, as monitored by absorbance increase at 720 nm, occurred by at least two reactions for both oat (half-lives of 47 and 250 ms assuming parallel reactions) and pea (half-lives of 170 and 770 ms assuming parallel reactions) phytochrome. The possibility of slower reactions was not tested. Assays for possible proteolysis of the phytochrome samples studied here indicated that the presence of degraded phytochrome could not account for the observed multiphasic kinetics except possibly for one phase of the triphasic intermediate decay seen with pea phytochrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号