首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we classify the complete rotational special Weingarten surfaces in ${\mathbb{S}^2 \times \mathbb{R}}$ and ${\mathbb{H}^2 \times \mathbb{R}}$ ; i.e. rotational surfaces in ${\mathbb{S}^2 \times \mathbb{R}}$ and ${\mathbb{H}^2 \times \mathbb{R}}$ whose mean curvature H and extrinsic curvature K e satisfy H = f(H 2 ? K e ), for some function ${f \in \mathcal{C}^1([0,+\infty))}$ such that f(0) = 0 and 4x(f′(x))2 < 1 for any x ≥ 0. Furthermore we show the existence of non-complete examples of such surfaces.  相似文献   

2.
We find new necessary conditions for the estimate ${||u||_{L^{q}_{t} (\mathbb{R}; L^{r}_{x} (\mathbb{R}^{n}))} \lesssim\,||F||_{L^{{\tilde{q}}^{\prime}}_{t}(\mathbb{R};L^{{\tilde{r}}^{\prime}}_{x}(\mathbb{R}^{n}))}}$ , where uu(t, x) is the solution to the Cauchy problem associated with the free inhomogeneous Schrödinger equation with identically zero initial data and inhomogeneity FF(t, x).  相似文献   

3.
We study the long-time asymptotics of solutions of the uniformly parabolic equation $$ u_t + F(D^2u) = 0 \quad{\rm in}\, {\mathbb{R}^{n}}\times \mathbb{R}_{+},$$ for a positively homogeneous operator F, subject to the initial condition u(x, 0) =  g(x), under the assumption that g does not change sign and possesses sufficient decay at infinity. We prove the existence of a unique positive solution Φ+ and negative solution Φ?, which satisfy the self-similarity relations $$\Phi^\pm (x,t) = \lambda^{\alpha^\pm}\Phi^\pm ( \lambda^{1/2} x,\lambda t ).$$ We prove that the rescaled limit of the solution of the Cauchy problem with nonnegative (nonpositive) initial data converges to ${\Phi^+}$ ( ${\Phi^-}$ ) locally uniformly in ${\mathbb{R}^{n} \times \mathbb{R}_{+}}$ . The anomalous exponents α+ and α? are identified as the principal half-eigenvalues of a certain elliptic operator associated to F in ${\mathbb{R}^{n}}$ .  相似文献   

4.
We consider non-autonomous functionals ${\mathcal{F}(u; \Omega)=\int_{\Omega}f(x, Du)\ dx}$ , where the density ${f:\Omega\times\mathbb{R}^{nN}\rightarrow\mathbb{R}}$ has almost linear growth, i.e., $$f(x,\xi)\approx |\xi|\log(1+|\xi|).$$ We prove partial C 1,?? -regularity for minimizers ${u:\mathbb{R}^n\supset\Omega\rightarrow \mathbb{R}^N}$ under the assumption that D ?? f (x, ??) is H?lder continuous with respect to the x-variable. If the x-dependence is C 1 we can improve this to full regularity provided additional structure conditions are satisfied.  相似文献   

5.
We study the Laplace equation in the half-space ${\mathbb{R}_{+}^{n}}$ with a nonlinear supercritical Robin boundary condition ${\frac{\partial u}{\partial\eta }+\lambda u=u\left\vert u\right\vert^{\rho-1}+f(x)}$ on ${\partial \mathbb{R}_{+}^{n}=\mathbb{R}^{n-1}}$ , where n ≥ 3 and λ ≥ 0. Existence of solutions ${u \in E_{pq}= \mathcal{D}^{1, p}(\mathbb{R}_{+}^{n}) \cap L^{q}(\mathbb{R}_{+}^{n})}$ is obtained by means of a fixed point argument for a small data $f \in {L^{d}(\mathbb{R}^{n-1})}$ . The indexes p, q are chosen for the norm ${\Vert\cdot\Vert_{E_{pq}}}$ to be invariant by scaling of the boundary problem. The solution u is positive whether f(x) > 0 a.e. ${x\in\mathbb{R}^{n-1}}$ . When f is radially symmetric, u is invariant under rotations around the axis {x n  = 0}. Moreover, in a certain L q -norm, we show that solutions depend continuously on the parameter λ ≥ 0.  相似文献   

6.
Suppose that n is even. Let ${\mathbb{F}_2}$ denote the two-element field and ${\mathbb{Z}}$ the set of integers. Bent functions can be defined as ± 1-valued functions on ${\mathbb{F}_2^n}$ with ± 1-valued Fourier transform. More generally we call a mapping f on ${\mathbb{F}_2^n}$ a ${\mathbb{Z}}$ -bent function if both f and its Fourier transform ${\widehat{f}}$ are integer-valued. ${\mathbb{Z}}$ -bent functions f are separated into different levels, depending on the size of the maximal absolute value attained by f and ${\widehat{f}}$ . It is shown how ${\mathbb{Z}}$ -bent functions of lower level can be built up recursively by gluing together ${\mathbb{Z}}$ -bent functions of higher level. This recursion comes down at level zero, containing the usual bent functions. In the present paper we start to study bent functions in the framework of ${\mathbb{Z}}$ -bent functions and give some guidelines for further research.  相似文献   

7.
Applying the boundedness on weighted Lebesgue spaces of the maximal singular integral operator S * related to the Carleson?CHunt theorem on almost everywhere convergence, we study the boundedness and compactness of pseudodifferential operators a(x, D) with non-regular symbols in ${L^\infty(\mathbb{R}, V(\mathbb{R})), PC(\overline{\mathbb{R}}, V(\mathbb{R}))}$ and ${\Lambda_\gamma(\mathbb{R}, V_d(\mathbb{R}))}$ on the weighted Lebesgue spaces ${L^p(\mathbb{R},w)}$ , with 1?< p <? ?? and ${w\in A_p(\mathbb{R})}$ . The Banach algebras ${L^\infty(\mathbb{R}, V(\mathbb{R}))}$ and ${PC(\overline{\mathbb{R}}, V(\mathbb{R}))}$ consist, respectively, of all bounded measurable or piecewise continuous ${V(\mathbb{R})}$ -valued functions on ${\mathbb{R}}$ where ${V(\mathbb{R})}$ is the Banach algebra of all functions on ${\mathbb{R}}$ of bounded total variation, and the Banach algebra ${\Lambda_\gamma(\mathbb{R}, V_d(\mathbb{R}))}$ consists of all Lipschitz ${V_d(\mathbb{R})}$ -valued functions of exponent ${\gamma \in (0,1]}$ on ${\mathbb{R}}$ where ${V_d(\mathbb{R})}$ is the Banach algebra of all functions on ${\mathbb{R}}$ of bounded variation on dyadic shells. Finally, for the Banach algebra ${\mathfrak{A}_{p,w}}$ generated by all pseudodifferential operators a(x, D) with symbols ${a(x, \lambda) \in PC(\overline{\mathbb{R}}, V(\mathbb{R}))}$ on the space ${L^p(\mathbb{R}, w)}$ , we construct a non-commutative Fredholm symbol calculus and give a Fredholm criterion for the operators ${A \in \mathfrak{A}_{p,w}}$ .  相似文献   

8.
Let X be a real separable F-space. We characterize solutions ${f:X\to\mathbb{R}}$ and ${M:\mathbb{R}\to\mathbb{R}}$ of the equation f(x?+?M(f(x))y)?=?f(x)f(y) such that f is bounded on a nonzero Christensen measurable set. Our result generalizes [Jab?o??ska in Acta Math Hung 125(1?C2):113?C119 2009, Theorem 1].  相似文献   

9.
Let ${\mathcal{P}}$ be a nonparametric probability model consisting of smooth probability densities and let ${\hat{p}_{n}}$ be the corresponding maximum likelihood estimator based on n independent observations each distributed according to the law ${\mathbb{P}}$ . With $\hat{\mathbb{P}}_{n}$ denoting the measure induced by the density ${\hat{p}_{n}}$ , define the stochastic process ${\hat{\nu}}_{n}: f\longmapsto \sqrt{n} \int fd({\hat{\mathbb{P}}}_{n} -\mathbb{P})$ where f ranges over some function class ${\mathcal{F}}$ . We give a general condition for Donsker classes ${\mathcal{F}}$ implying that the stochastic process $\hat{\nu}_{n}$ is asymptotically equivalent to the empirical process in the space ${\ell ^{\infty }(\mathcal{F})}$ of bounded functions on ${ \mathcal{F}}$ . This implies in particular that $\hat{\nu}_{n}$ converges in law in ${\ell ^{\infty }(\mathcal{F})}$ to a mean zero Gaussian process. We verify the general condition for a large family of Donsker classes ${\mathcal{ F}}$ . We give a number of applications: convergence of the probability measure ${\hat{\mathbb{P}}_{n}}$ to ${\mathbb{P}}$ at rate ${\sqrt{n}}$ in certain metrics metrizing the topology of weak(-star) convergence; a unified treatment of convergence rates of the MLE in a continuous scale of Sobolev-norms; ${\sqrt{n}}$ -efficient estimation of nonlinear functionals defined on ${\mathcal{P}}$ ; limit theorems at rate ${\sqrt{n}}$ for the maximum likelihood estimator of the convolution product ${\mathbb{P\ast P}}$ .  相似文献   

10.
Let ${G: \mathbb {C}^{n-1} \rightarrow \mathbb {C}}$ be holomorphic such that G(0)?=?0 and DG(0)?=?0. When f is a convex (resp. starlike) normalized (f(0)?=?0, f??(0)?=?1) univalent mapping of the unit disk ${\mathbb {D}}$ in ${\mathbb {C}}$ , then the extension of f to the Euclidean unit ball ${\mathbb {B}}$ in ${\mathbb {C}^n}$ given by ${\Phi_G(f)(z)=(f(z_1)+G(\sqrt{f^{\prime}(z_1)} \, \hat{z}),\sqrt{f^{\prime}(z_1)}\, \hat{z})}$ , ${\hat{z}=(z_2,\dots,z_n) \in \mathbb {C}^{n-1}}$ , is known to be convex (resp. starlike) if G is a homogeneous polynomial of degree 2 with sufficiently small norm. Conversely, it is known that G cannot have terms of degree greater than 2 in its expansion about 0 in order for ${\Phi_G(f)}$ to be convex (resp. starlike), in general. We examine whether the restriction that f be either convex or starlike of a certain order ${\alpha \in (0,1]}$ allows, in general, for G to contain terms of degree greater than 2 and still have ${\Phi_G(f)}$ maintain the respective geometric property. Related extension results for convex and starlike Bloch mappings are also given.  相似文献   

11.
In the theory of coalgebras C over a ring R, the rational functor relates the category $_{C^*}{\mathbb{M}}$ of modules over the algebra C * (with convolution product) with the category $^C{\mathbb{M}}$ of comodules over C. This is based on the pairing of the algebra C * with the coalgebra C provided by the evaluation map ${\rm ev}:C^*\otimes_R C\to R$ . The (rationality) condition under consideration ensures that $^C{\mathbb{M}}$ becomes a coreflective full subcategory of $_{C^*}{\mathbb{M}}$ . We generalise this situation by defining a pairing between endofunctors T and G on any category ${\mathbb{A}}$ as a map, natural in $a,b\in {\mathbb{A}}$ , $$ \beta_{a,b}:{\mathbb{A}}(a, G(b)) \to {\mathbb{A}}(T(a),b), $$ and we call it rational if these all are injective. In case T?=?(T, m T , e T ) is a monad and G?=?(G, δ G , ε G ) is a comonad on ${\mathbb{A}}$ , additional compatibility conditions are imposed on a pairing between T and G. If such a pairing is given and is rational, and T has a right adjoint monad T ???, we construct a rational functor as the functor-part of an idempotent comonad on the T-modules ${\mathbb{A}}_{T}$ which generalises the crucial properties of the rational functor for coalgebras. As a special case we consider pairings on monoidal categories.  相似文献   

12.
Let ${U \subset \mathbb{R}^{N}}$ be a neighbourhood of the origin and a function ${F:U\rightarrow U}$ be of class C r , r ≥ 2, F(0) = 0. Denote by F n the n-th iterate of F and let ${0<|s_1|\leq \cdots \leq|s_N| <1 }$ , where ${s_1, \ldots , s_N}$ are the eigenvalues of dF(0). Assume that the Schröder equation ${\varphi(F(x))=S\varphi(x)}$ , where S: = dF(0) has a C 2 solution φ such that dφ(0) = id. If ${\frac{log|s_1|}{log|s_N|} <2 }$ then the sequence {S ?n F n (x)} converges for every point x from the basin of attraction of F to a C 2 solution φ of (1). If ${2\leq\frac{log|s_1|}{log|s_N|} }$ then this sequence can be diverging. In this case we give some sufficient conditions for the convergence and divergence of the sequence {S ?n F n (x)}. Moreover, we show that if F is of class C r and ${r>\big[\frac{log|s_1|}{log|s_N|} \big ]:=p \geq 2}$ then every C r solution of the Schröder equation such that dφ(0) = id is given by the formula $$\begin{array}{ll}\varphi (x)={\lim\limits_{n \rightarrow \infty}} (S^{-n}F^n(x) + {\sum\limits _{k=2}^{p}} S^{-n}L_k (F^n(x))),\end{array}$$ where ${L_k:\mathbb{R}^{N} \rightarrow \mathbb{R}^{N}}$ are some homogeneous polynomials of degree k, which are determined by the differentials d (j) F(0) for 1 < j ≤  p.  相似文献   

13.
This paper relates the multiple point spaces in the source and target of a corank 1 map-germ ${(\mathbb {C}^n, 0)\to(\mathbb {C}^{n+1}, 0)}$ . Let f be such a map-germ, and, for 1 ≤ k ≤ multiplicity( f ), let D k ( f ) be its k’th multiple point scheme – the closure of the set of ordered k-tuples of pairwise distinct points sharing the same image. There are natural projections D k+1( f ) → D k ( f ), determined by forgetting one member of the (k + 1)-tuple. We prove that the matrix of a presentation of ${\mathcal {O}_{D^{k+1}(f)}}$ over ${\mathcal {O}_{D^k(f)}}$ appears as a certain submatrix of the matrix of a suitable presentation of ${\mathcal {O}_{\mathbb {C}^n,0}}$ over ${\mathcal {O}_{\mathbb {C}^{n+1},0}}$ . This does not happen for germs of corank > 1.  相似文献   

14.
We consider the Dirichlet boundary value problem for a singular elliptic PDE like F[u] = p(x)u ??? , where p, ?? ?? 0, in a bounded smooth domain of ${\mathbb{R}^n}$ . The nondivergence form operator F is assumed to be of Hamilton?CJacobi?CBellman or Isaacs type. We establish existence and regularity results for such equations.  相似文献   

15.
We consider singular solutions of the functional equation ${f(xf(x)) = \varphi (f(x))}$ where ${\varphi}$ is a given and f an unknown continuous map ${\mathbb R_{+} \rightarrow \mathbb R_{+}}$ . A solution f is regular if the sets ${R_f \cap (0, 1]}$ and ${R_f \cap [1, \infty)}$ , where R f is the range of f, are ${\varphi}$ -invariant; otherwise f is singular. We show that for singular solutions the associated dynamical system ${({R_f}, \varphi|_{R_f})}$ can have strange properties unknown for the regular solutions. In particular, we show that ${\varphi |_{R_f}}$ can have a periodic point of period 3 and hence can be chaotic in a strong sense. We also provide an effective method of construction of singular solutions.  相似文献   

16.
We are looking for local analytic respectively formal solutions of the generalized Dhombres functional equation ${f(zf(z))=\varphi(f(z))}$ in the complex domain. First we give two proofs of the existence theorem about solutions f with f(0) = w 0 and ${w_0 \in \mathbb{C}^\star {\setminus}\mathbb{E}}$ where ${\mathbb{E}}$ denotes the group of complex roots of 1. Afterwards we represent solutions f by means of infinite products where we use on the one hand the canonical convergence of complex analysis, on the other hand we show how solutions converge with respect to the weak topology. In this section we also study solutions where the initial value z 0 is different from zero.  相似文献   

17.
For a polynomial ${f\in{\mathbb {F}}_p[X]}$ , we obtain upper bounds on the number of points (x, f (x)) modulo a prime p which belong to an arbitrary square with the side length H. Our results in particular are based on the Vinogradov mean value theorem. Using these estimates we obtain results on the expansion of orbits in dynamical systems generated by nonlinear polynomials and we obtain an asymptotic formula for the number of visible points on the curve ${f(x)\equiv y\, ({\rm mod}\, p)}$ , where ${f\in{\mathbb {F}}_p[X]}$ is a polynomial of degree d?≥ 2. We also use some recent results and techniques from arithmetic combinatorics to study the values (x, f (x)) in more general sets.  相似文献   

18.
This paper is concerned with traveling wave front and the stability as planar wave of reaction diffusion system on ${\mathbb{R}^{n}}$ , where n ≥ 2. Existence and asymptotic behavior of traveling wave front are discussed firstly. The stability as planar wave is established secondly by using super-sub solution method. Under initial perturbation that decays at space infinity, the perturbed solution converges to planar wave as ${t \rightarrow {\infty}}$ and the convergence is uniform in ${\mathbb{R}^{n}}$ .  相似文献   

19.
In this paper we prove that ifu: ${\mathbb{B}}^n \to {\mathbb{R}}$ , where ${\mathbb{B}}^n $ is the unit ball in ? n , is a monotone function in the Sobolev space Wp ( ${\mathbb{B}}^n $ ), andn ? 1 <pn, thenu has nontangential limits at all the points of $\partial {\mathbb{B}}^n $ except possibly on a set ofp-capacity zero. The key ingredient in the proof is an extension of a classical theorem of Lindelöf to monotone functions in Wp ( ${\mathbb{B}}^n $ ),n ? 1 <pn.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号