首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Euler–Bernoulli beams under static loads in presence of discontinuities in the curvature and in the slope functions are the object of this study. Both types of discontinuities are modelled as singularities, superimposed to a uniform flexural stiffness, by making use of distributions such as unit step and Dirac's delta functions. A non-trivial generalisation to multiple different singularities of an integration procedure recently proposed by the authors for a single singularity is presented in this paper. The proposed integration procedure leads to closed form solutions, dependent on boundary conditions only, which do not require enforcement of continuity conditions along the beam span. It is however shown how, from the solution of the clamped-clamped beam, by considering suitable singularities at boundaries in the flexural stiffness model, responses concerning several boundary conditions can be recovered. Furthermore, solutions in terms of deflection of the beam are obtained for imposed displacements at boundaries providing the so called shape functions. The above mentioned shape functions can be adopted to insert beams with singularities as frame elements in a finite element discretisation of a frame structure. Explicit expressions of the element stiffness matrix are provided for beam elements with multiple singularities and the reduction of degrees of freedom with respect to classical finite element procedures is shown. Extension of the proposed procedure to beams with axial displacement and vertical deflection discontinuities is also presented.  相似文献   

2.
In this work, a model of the stepped Timoshenko beam in presence of deflection and rotation discontinuities along the span is presented. The proposed model relies on the adoption of Heaviside’s and Dirac’s delta distributions to model abrupt and concentrated, both flexural and shear, stiffness discontinuities of the beam that lead to exact closed-form solutions of the elastic response in presence of static loads. Based on the latter solutions, a novel beam element for the analysis of frame structures with an arbitrary distribution of singularities is here proposed. In particular, the presented closed-form solutions are exploited to formulate the displacement shape functions of the beam element and the relevant explicit form of the stiffness matrix. The proposed beam element is adopted for a finite element discretization of discontinuous framed structures. In particular, by means of the introduction of a mass matrix consistent with the adopted shape functions, the presented model allows also the dynamic analysis of framed structures in presence of deflection and rotation discontinuities and abrupt variations of the cross-section. The presented formulation can also be easily employed to conduct a dynamic analysis of damaged frame structures in which the distributed and concentrated damage distributions are modelled by means of equivalent discontinuities. As an example, a simple portal frame, under different damage scenarios, has been analysed and the results in terms of frequency and vibration modes have been compared with exact results to show the accuracy of the presented discontinuous beam element.  相似文献   

3.
The problem of the integration of the static governing equations of the uniform Euler–Bernoulli beam with discontinuities is studied. In particular, two types of discontinuities have been considered: flexural stiffness and slope discontinuities. Both the above mentioned discontinuities have been modeled as singularities of the flexural stiffness by means of superimposition of suitable distributions (generalized functions) to a uniform one dimensional field. Closed form solutions of governing differential equation, requiring the knowledge of the boundary conditions only, are proposed, and no continuity conditions are enforced at intermediate cross-sections where discontinuities are shown. The continuity conditions are in fact embedded in the flexural stiffness model and are automatically accounted for by the proposed integration procedure. Finally, the proposed closed form solution for the cases of slope discontinuity is compared with the solution of a beam having an internal hinge with rotational spring reproducing the slope discontinuity.  相似文献   

4.
In this paper, a size-dependent Timoshenko beam is developed on the basis of the couple stress theory. The couple stress theory is a non-classic continuum theory capable of capturing the small-scale size effects on the mechanical behavior of structures, while the classical continuum theory is unable to predict the mechanical behavior accurately when the characteristic size of structures is close to the material length scale parameter. The governing differential equations of motion are derived for the couple-stress Timoshenko beam using the principles of linear and angular momentum. Then, the general form of boundary conditions and generally valid closed-form analytical solutions are obtained for the axial deformation, bending deflection, and the rotation angle of cross sections in the static cases. As an example, the closed-form analytical results are obtained for the response of a cantilever beam subjected to a static loading with a concentrated force at its free end. The results indicate that modeling on the basis of the couple stress theory causes more stiffness than modeling by the classical beam theory. In addition, the results indicate that the differences between the results of the proposed model and those based on the classical Euler–Bernoulli and classical Timoshenko beam theories are significant when the beam thickness is comparable to its material length scale parameter.  相似文献   

5.
粘弹性Timoshenko梁的变分原理和静动力学行为分析   总被引:14,自引:0,他引:14  
从线性,各向同性,均匀粘弹性材料的Boltzmann本构定律出发,通过Laplace变换及其反变换,由三维积分型本构关系给出了Timoshenko梁的本构关系,并由此建立了小挠度情况下粘弹性Timoshenko梁的静动力学行为分析的数学模型,一个积分-偏微分方程组的初边值问题。同时,采用卷积,建立了相应的简化Gurtin型变分原理。给出了两个算例,考查了梁的厚度h与梁的长度l之比β对梁的力学行为的影响。  相似文献   

6.
Standing waves of a Timoshenko beamof finite length and their connectionwith running waves for an infinite beam are considered. It is shown that the principle of a “closed cycle” of a running wave is completely identical to the usual procedure of direct satisfaction from the side of the general solution for an infinite Timoshenko beam, to the boundary conditions of a beam of finite length. The question of the existence of a second frequency spectrum under arbitrary boundary conditions of a beam is discussed. A “relaxed approach” to the concept of the second frequency spectrum is proposed. The results of the theoretical analysis are confirmed by numerical calculations for the Timoshenko beam with elastic supports and elastic sealing of its end sections.  相似文献   

7.
In this work the static stability of the uniform Timoshenko column in presence of multiple cracks, subjected to tensile or compressive loads, is analyzed. The governing differential equations are formulated by modeling the cracks as concentrated reductions of the flexural stiffness, accomplished by the use of Dirac’s delta distributions. The adopted model has allowed the derivation of the exact buckling modes and the corresponding buckling load equations of the Timoshenko multi-cracked column, as a function of four integration constant only, which are derived simply by enforcing the end boundary conditions, irrespective of the number of concentrated damage. Since shear deformability has been taken into account, the buckling load equation allows capturing both compressive and tensile buckling. The latter phenomenon has been recently investigated with reference to rubber bearing isolators, modeled as short beams, but it has been shown to occur also in slender beams characterized by high distributed shear deformation, like composite and layered beams. The influence of multiple concentrated cracks on the stability of shear deformable beams, particularly under the action of tensile loads, has never been assessed in the literature and is here addressed on the basis of an extensive parametric analysis. All the reported results have been compared with the Euler multi-cracked column in order to highlight its limits of applicability.  相似文献   

8.
The solution of curved Timoshenko beams with or without generalized two-parameter elastic foundation is presented. Beam can be subjected to any kind of loads and imposed external actions, distributed or concentrated along the beam. It can have external and internal restraints and any kind of internal kinematical or mechanical discontinuity. Moreover, the beam may have any spatial curved geometry, by dividing the entire structure into segments of constant curvature and constant elastic properties, each segment resting or not on elastic foundation. The foundation has six parameters like a generalized Winkler soil with the addition of other two parameters involving the link between settlements in transverse direction, as occurs for Pasternak soil model. The solution is obtained by the Hamiltonian structural analysis method, based on an energetic approach, solving a mixed canonical Hamiltonian system of twelve differential equations, leading to the fundamental matrix. The solution, numerically expressed or in closed form, is fast and simple to be implemented on a software, being the solving matrix always of order 12 for any kind of geometry and loads, without increasing in computational complexity. Numerical examples are given, comparing the results of the proposed procedure with the literature data, for rectilinear and curved beams with different soil properties.  相似文献   

9.
In the present paper, the dynamic stability of multi-walled carbon nanotubes(MWCNTs) embedded in an elastic medium is investigated including thermal environment effects. To this end, a nonlocal Timoshenko beam model is developed which captures small scale effects.Dynamic governing equations of the carbon nanotubes are formulated based on the Timoshenko beam theory including the effects of axial compressive force. Then a parametric study is conducted to investigate the influences of static load factor, temperature change, nonlocal parameter, slenderness ratio and spring constant of the elastic medium on the dynamic stability characteristics of MWCNTs with simply-supported end supports.  相似文献   

10.
A microstructure-dependent Timoshenko beam model is developed using a variational formulation. It is based on a modified couple stress theory and Hamilton's principle. The new model contains a material length scale parameter and can capture the size effect, unlike the classical Timoshenko beam theory. Moreover, both bending and axial deformations are considered, and the Poisson effect is incorporated in the current model, which differ from existing Timoshenko beam models. The newly developed non-classical beam model recovers the classical Timoshenko beam model when the material length scale parameter and Poisson's ratio are both set to be zero. In addition, the current Timoshenko beam model reduces to a microstructure-dependent Bernoulli-Euler beam model when the normality assumption is reinstated, which also incorporates the Poisson effect and can be further reduced to the classical Bernoulli-Euler beam model. To illustrate the new Timoshenko beam model, the static bending and free vibration problems of a simply supported beam are solved by directly applying the formulas derived. The numerical results for the static bending problem reveal that both the deflection and rotation of the simply supported beam predicted by the new model are smaller than those predicted by the classical Timoshenko beam model. Also, the differences in both the deflection and rotation predicted by the two models are very large when the beam thickness is small, but they are diminishing with the increase of the beam thickness. Similar trends are observed for the free vibration problem, where it is shown that the natural frequency predicted by the new model is higher than that by the classical model, with the difference between them being significantly large only for very thin beams. These predicted trends of the size effect in beam bending at the micron scale agree with those observed experimentally. Finally, the Poisson effect on the beam deflection, rotation and natural frequency is found to be significant, which is especially true when the classical Timoshenko beam model is used. This indicates that the assumption of Poisson's effect being negligible, which is commonly used in existing beam theories, is inadequate and should be individually verified or simply abandoned in order to obtain more accurate and reliable results.  相似文献   

11.
A micro scale Timoshenko beam model is developed based on strain gradient elasticity theory. Governing equations, initial conditions and boundary conditions are derived simultaneously by using Hamilton's principle. The new model incorporated with Poisson effect contains three material length scale parameters and can consequently capture the size effect. This model can degenerate into the modified couple stress Timoshenko beam model or even the classical Timoshenko beam model if two or all material length scale parameters are taken to be zero respectively. In addition, the newly developed model recovers the micro scale Bernoulli–Euler beam model when shear deformation is ignored. To illustrate the new model, the static bending and free vibration problems of a simply supported micro scale Timoshenko beam are solved respectively. Numerical results reveal that the differences in the deflection, rotation and natural frequency predicted by the present model and the other two reduced Timoshenko models are large as the beam thickness is comparable to the material length scale parameter. These differences, however, are decreasing or even diminishing with the increase of the beam thickness. In addition, Poisson effect on the beam deflection, rotation and natural frequency possesses an interesting “extreme point” phenomenon, which is quite different from that predicted by the classical Timoshenko beam model.  相似文献   

12.
Nonprismatic beam modeling is an important issue in structural engineering, not only for versatile applicability the tapered beams do have in engineering structures, but also for their unique potential to simulate different kinds of material or geometrical variations such as crack appearing or spreading of plasticity along the beam. In this paper, a new procedure is proposed to find the exact shape functions and stiffness matrices of nonprismatic beam elements for the Euler–Bernoulli and Timoshenko formulations. The variations dealt with here include both tapering and abrupt jumps in section parameters along the beam element. The proposed procedure has found a simple structure, due to two special approaches: The separation of rigid body motions, which do not store strain energy, from other strain states, which store strain energy, and finding strain interpolating functions rather than the shape functions which suffer complex representation. Strain interpolating functions involve low-order polynomials and can suitably track the variations along the beam element. The proposed procedure is implemented to model nonprismatic Euler–Bernoulli and Timoshenko beam elements, and is verified by different numerical examples.  相似文献   

13.
A multilayer plate with isotropic (or transversally isotropic) layers strongly differing in rigidity is considered. This plate is reduced to an equivalent homogeneous transversally isotropic Timoshenko–Reissner plate whose deflections and free transverse vibration frequencies are close to those of the multilayer plate. By comparison with the exact solution of test three-dimensional problems of elasticity, the error of the proposed method is estimated both for the static problem and for free vibrations. This comparison can readily be carried out for the hinged edges of the plate, and explicit approximate formulas are obtained for the vibration frequencies. The scope of the proposed model turned out to be rather wide (the Young moduli of soft and rigid layers can differ by a factor of 1000). In the case of boundary conditions other than hinged support, a closed-form solution cannot be constructed in general. For rigidly fixed edges, the asymptotic method proposed by V. V. Bolotin is generalized to the case of a Timoshenko–Reissner plate.  相似文献   

14.
The dynamic transient responses of a simply-supported Timoshenko beam subjected to an impact force are investigated by two theoretical approaches – ray and normal mode methods. The mathematical methodology proposed in this study for the ray method enable us to construct the solution for the interior source problem and to extend to solve the complicated problem for the multi span of the Timoshenko beam. Numerical results based on these two approaches are compared. The comparison in this study indicates that the normal mode method is more computationally efficient than the ray method except for very short time after the impact. The long-time transient responses are easily calculated using the normal mode method. It is shown that the average long-time transient response converges to the corresponding static value. The Timoshenko beam theory is more accurate than the Bernoulli–Euler beam theory because it includes shear and rotary inertia. This study also provides the slender ratio for which the Bernoulli–Euler beam can be used for the transient-response analysis of the displacement. Moreover, the resonant frequencies obtained from finite element calculation based on the three-dimensional model are compared with the results calculated using the Timoshenko beam and Bernoulli–Euler beam theories. It is noted in this study that the resonant frequency can be accurately determined by the Timoshenko beam theory if the slender ratio is larger than 100, and by the Bernoulli–Euler beam theory if the slender ratio is larger than 400.  相似文献   

15.
The degeneration of image singularities from an anisotropic material to an isotropic material for a half-plane is discussed in this study. The Green’s functions for anisotropic and isotropic half-planes with traction free boundary subjected to concentrated forces and dislocations have been obtained by many authors. It was commonly accepted that the solution of isotropic problem cannot be derived from anisotropic solutions. However, we believe that this possibility exists as we will demonstrate in this paper. Anisotropic materials include only image singularities of order O(1/r) (i.e., forces and dislocations) existing on image points. There are many image points for anisotropic materials and the locations of these image points depend on the material constants. However, isotropic materials have only one image point with higher order image singularities (O(1/r2), O(1/r3)). From the analysis provided in this study, it is found that the higher order image singularities for an isotropic half-plane are generated by combining the concentrated forces and dislocations when an anisotropic material degenerates to an isotropic material. The solutions of higher order image singularities for isotropic material are dependent. Therefore, these image singularities can be combined to form only three or four simpler image singularities acting on an image point of the isotropic material.  相似文献   

16.
A new modified version of the Timoshenko theory of thin shells is proposed to describe the process of deformation of thin shells with arbitrary displacements and strains. The new version is based on introducing an unknown function in the form of a rotation vector whose components in the basis fitted to the deformed mid-surface of the shell are the components of the transverse shear vector and the extensibility in the transverse direction according to Chernykh. For the case with the shell mid-surface fitted to an arbitrary non-orthogonal system of curvilinear coordinates, relationships based on the use of true stresses and true strains in accordance with Novozhilov are obtained for internal forces and moments. Based on these relationships, a problem of static instability of an isotropic spherical shell experiencing internal pressure is solved. The shell is considered to be made either of a linear elastic material or of an elastomer (rubber), which is described by Chernykh’s relationships.  相似文献   

17.
Based on the method of reverberation ray matrix(MRRM), a reverberation matrix for planar framed structures composed of anisotropic Timoshenko(T) beam members containing completely hinged joints is developed for static analysis of such structures.In the MRRM for dynamic analysis, amplitudes of arriving and departing waves for joints are chosen as unknown quantities. However, for the present case of static analysis, displacements and rotational angles at the ends of each beam member are directly considered as unknown quantities. The expressions for stiffness matrices for anisotropic beam members are developed. A corresponding reverberation matrix is derived analytically for exact and unified determination on the displacements and internal forces at both ends of each member and arbitrary cross sectional locations in the structure. Numerical examples are given and compared with the finite element method(FEM) results to validate the present model. The characteristic parameter analysis is performed to demonstrate accuracy of the present model with the T beam theory in contrast with errors in the usual model based on the Euler-Bernoulli(EB) beam theory. The resulting reverberation matrix can be used for exact calculation of anisotropic framed structures as well as for parameter analysis of geometrical and material properties of the framed structures.  相似文献   

18.
非对称混杂边界轴向运动Timoshenko梁橫向振动分析   总被引:1,自引:0,他引:1  
研究两端带有扭转弹簧且弹簧系数均可任意变化的非对称混杂边界下的轴向运动Timoshenko梁的横向振动.利用非对称混杂边界条件推导对应任意弹簧系数的系统超越方程以及特征函数.运用数值方法计算系统的固有频率及其相应的模态函数,并研究确定梁的刚度、轴向速度以及边界处扭转弹簧的刚度的影响.通过数值算例,比较7imoshenko梁、瑞利梁、剪切梁和欧拉梁的固有频率随轴向速度的变化,分析转动惯量和剪切变形的影响.  相似文献   

19.
Dirac’s delta functions enable simple and effective representations of point loads and singularities in a variety of structural problems, leading very often to elegant and otherwise unworkable closed-form solutions. This is the case of cracked beams under static loads, whose theoretical and practical significance has attracted in recent years the interest of many researchers. Nevertheless, analytical formulations currently available for this problem are not completely satisfactory, either in terms of computational efficiency, when the continuity conditions must be enforced with auxiliary equations, or in terms of physical consistency, when the singularities in the beam’s flexural rigidity are represented with Dirac’s delta functions having a questionable negative sign. These considerations motivate the present study, which offers a novel and physically-based modelling of slender Euler–Bernoulli beams and short Timoshenko beams with any number and severity of cracks, conducing in both cases to exact closed-form solutions. For validation purposes, a standard finite element code is used, along with two nascent deltas (uniform and Gaussian density functions) to describe a smeared increase in the bending flexibility around the abscissa of the crack.  相似文献   

20.
李俊  金咸定  何东明 《力学季刊》2002,23(3):380-385
建立了一种普遍的解析理论用于求解确定性载荷作用下Timoshenko薄壁梁的弯扭耦合动力响应。首先通过直接求解单对称均匀Timoshenko薄壁梁单元弯扭耦合振动的运动偏微分方程,给出了计算其自由振动的精确方法,并导出了Timoshenko弯扭耦合薄壁梁自由振动主模态的正交条件。然后利用简正模态法研究了确定性载荷作用下单对称Timoshenko薄壁梁的弯扭耦合动力响应,该弯扭耦合梁所受到的荷载可以是集中载荷或沿着梁长度分布的分布载荷。最后假定确定性载荷是谐波变化的,得到了各种激励下封闭形式的解,并对动力弯曲位移和扭转位移的数值结果进行了讨论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号